Given a graph G where each node is associated with a set of attributes, and a parameter k specifying the number of output clusters, k-attributed graph clustering (k-AGC) groups nodes in G into k disjoint clusters, such that nodes within the same cluster share similar topological and attribute characteristics, while those in different clusters are dissimilar. This problem is challenging on massive graphs, e.g., with millions of nodes and billions of edges. For such graphs, existing solutions either incur prohibitively high costs, or produce clustering results with compromised quality. In this paper, we propose ACMin, an effective approach to k-AGC that yields high-quality clusters with cost linear to the size of the input graph G. The main contributions of ACMin are twofold: (i) a novel formulation of the k-AGC problem based on an attributed multi-hop conductance quality measure custom-made for this problem setting, which effectively captures cluster coherence in terms of both topological proximities and attribute similarities, and (ii) a linear-time optimization solver that obtains high-quality clusters iteratively, based on efficient matrix operations such as orthogonal iterations, an alternative optimization approach, as well as an initialization technique that significantly speeds up the convergence of ACMin in practice. Extensive experiments, comparing 11 competitors on 6 real datasets, demonstrate that ACMin consistently outperforms all competitors in terms of result quality measured against ground-truth labels, while being up to orders of magnitude faster. In particular, on the Microsoft Academic Knowledge Graph dataset with 265.2 million edges and 1.1 billion attribute values, ACMin outputs high-quality results for 5-AGC within 1.68 hours using a single CPU core, while none of the 11 competitors finish within 3 days.

0
下载
关闭预览

相关内容

This paper presents noise-robust clustering techniques in unsupervised machine learning. The uncertainty about the noise, consistency, and other ambiguities can become severe obstacles in data analytics. As a result, data quality, cleansing, management, and governance remain critical disciplines when working with Big Data. With this complexity, it is no longer sufficient to treat data deterministically as in a classical setting, and it becomes meaningful to account for noise distribution and its impact on data sample values. Classical clustering methods group data into "similarity classes" depending on their relative distances or similarities in the underlying space. This paper addressed this problem via the extension of classical $K$-means and $K$-medoids clustering over data distributions (rather than the raw data). This involves measuring distances among distributions using two types of measures: the optimal mass transport (also called Wasserstein distance, denoted $W_2$) and a novel distance measure proposed in this paper, the expected value of random variable distance (denoted ED). The presented distribution-based $K$-means and $K$-medoids algorithms cluster the data distributions first and then assign each raw data to the cluster of data's distribution.

0
0
下载
预览

Attributed graph clustering, which learns node representation from node attribute and topological graph for clustering, is a fundamental but challenging task for graph analysis. Recently, methods based on graph contrastive learning (GCL) have obtained impressive clustering performance on this task. Yet, we observe that existing GCL-based methods 1) fail to benefit from imprecise clustering labels; 2) require a post-processing operation to get clustering labels; 3) cannot solve out-of-sample (OOS) problem. To address these issues, we propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC). In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, which aims to maximize the similarities of intra-cluster nodes while minimizing the similarities of inter-cluster nodes, are designed for node representation learning. Meanwhile, a clustering module is built to directly output clustering labels by contrasting the representation of different clusters. Thus, for the OOS nodes, SCAGC can directly calculate their clustering labels. Extensive experimental results on four benchmark datasets have shown that SCAGC consistently outperforms 11 competitive clustering methods.

0
0
下载
预览

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

0
22
下载
预览

Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.

0
7
下载
预览

Real-world applications often combine learning and optimization problems on graphs. For instance, our objective may be to cluster the graph in order to detect meaningful communities (or solve other common graph optimization problems such as facility location, maxcut, and so on). However, graphs or related attributes are often only partially observed, introducing learning problems such as link prediction which must be solved prior to optimization. We propose an approach to integrate a differentiable proxy for common graph optimization problems into training of machine learning models for tasks such as link prediction. This allows the model to focus specifically on the downstream task that its predictions will be used for. Experimental results show that our end-to-end system obtains better performance on example optimization tasks than can be obtained by combining state of the art link prediction methods with expert-designed graph optimization algorithms.

0
6
下载
预览

We present a new clustering method in the form of a single clustering equation that is able to directly discover groupings in the data. The main proposition is that the first neighbor of each sample is all one needs to discover large chains and finding the groups in the data. In contrast to most existing clustering algorithms our method does not require any hyper-parameters, distance thresholds and/or the need to specify the number of clusters. The proposed algorithm belongs to the family of hierarchical agglomerative methods. The technique has a very low computational overhead, is easily scalable and applicable to large practical problems. Evaluation on well known datasets from different domains ranging between 1077 and 8.1 million samples shows substantial performance gains when compared to the existing clustering techniques.

0
3
下载
预览

An attributed network enriches a pure network by encoding a part of widely accessible node auxiliary information into node attributes. Learning vector representation of each node a.k.a. Network Embedding (NE) for such an attributed network by considering both structure and attribute information has recently attracted considerable attention, since each node embedding is simply a unified low-dimension vector representation that makes downstream tasks e.g. link prediction more efficient and much easier to realize. Most of previous works have not considered the significant case of a network with incomplete structure information, which however, would often appear in our real-world scenarios e.g. the abnormal users in a social network who intentionally hide their friendships. And different networks obviously have different levels of incomplete structure information, which imposes more challenges to balance two sources of information. To tackle that, we propose a robust NE method called Attributed Biased Random Walks (ABRW) to employ attribute information for compensating incomplete structure information by using transition matrices. The experiments of link prediction and node classification tasks on real-world datasets confirm the robustness and effectiveness of our method to the different levels of the incomplete structure information.

0
3
下载
预览

Attributed network embedding has received much interest from the research community as most of the networks come with some content in each node, which is also known as node attributes. Existing attributed network approaches work well when the network is consistent in structure and attributes, and nodes behave as expected. But real world networks often have anomalous nodes. Typically these outliers, being relatively unexplainable, affect the embeddings of other nodes in the network. Thus all the downstream network mining tasks fail miserably in the presence of such outliers. Hence an integrated approach to detect anomalies and reduce their overall effect on the network embedding is required. Towards this end, we propose an unsupervised outlier aware network embedding algorithm (ONE) for attributed networks, which minimizes the effect of the outlier nodes, and hence generates robust network embeddings. We align and jointly optimize the loss functions coming from structure and attributes of the network. To the best of our knowledge, this is the first generic network embedding approach which incorporates the effect of outliers for an attributed network without any supervision. We experimented on publicly available real networks and manually planted different types of outliers to check the performance of the proposed algorithm. Results demonstrate the superiority of our approach to detect the network outliers compared to the state-of-the-art approaches. We also consider different downstream machine learning applications on networks to show the efficiency of ONE as a generic network embedding technique. The source code is made available at https://github.com/sambaranban/ONE.

0
5
下载
预览

The eigendeomposition of nearest-neighbor (NN) graph Laplacian matrices is the main computational bottleneck in spectral clustering. In this work, we introduce a highly-scalable, spectrum-preserving graph sparsification algorithm that enables to build ultra-sparse NN (u-NN) graphs with guaranteed preservation of the original graph spectrums, such as the first few eigenvectors of the original graph Laplacian. Our approach can immediately lead to scalable spectral clustering of large data networks without sacrificing solution quality. The proposed method starts from constructing low-stretch spanning trees (LSSTs) from the original graphs, which is followed by iteratively recovering small portions of "spectrally critical" off-tree edges to the LSSTs by leveraging a spectral off-tree embedding scheme. To determine the suitable amount of off-tree edges to be recovered to the LSSTs, an eigenvalue stability checking scheme is proposed, which enables to robustly preserve the first few Laplacian eigenvectors within the sparsified graph. Additionally, an incremental graph densification scheme is proposed for identifying extra edges that have been missing in the original NN graphs but can still play important roles in spectral clustering tasks. Our experimental results for a variety of well-known data sets show that the proposed method can dramatically reduce the complexity of NN graphs, leading to significant speedups in spectral clustering.

0
4
下载
预览

Adding attributes for nodes to network embedding helps to improve the ability of the learned joint representation to depict features from topology and attributes simultaneously. Recent research on the joint embedding has exhibited a promising performance on a variety of tasks by jointly embedding the two spaces. However, due to the indispensable requirement of globality based information, present approaches contain a flaw of in-scalability. Here we propose \emph{SANE}, a scalable attribute-aware network embedding algorithm with locality, to learn the joint representation from topology and attributes. By enforcing the alignment of a local linear relationship between each node and its K-nearest neighbors in topology and attribute space, the joint embedding representations are more informative comparing with a single representation from topology or attributes alone. And we argue that the locality in \emph{SANE} is the key to learning the joint representation at scale. By using several real-world networks from diverse domains, We demonstrate the efficacy of \emph{SANE} in performance and scalability aspect. Overall, for performance on label classification, SANE successfully reaches up to the highest F1-score on most datasets, and even closer to the baseline method that needs label information as extra inputs, compared with other state-of-the-art joint representation algorithms. What's more, \emph{SANE} has an up to 71.4\% performance gain compared with the single topology-based algorithm. For scalability, we have demonstrated the linearly time complexity of \emph{SANE}. In addition, we intuitively observe that when the network size scales to 100,000 nodes, the "learning joint embedding" step of \emph{SANE} only takes $\approx10$ seconds.

0
3
下载
预览
小贴士
相关主题
相关论文
Rahmat Adesunkanmi,Ratnesh Kumar
0+阅读 · 10月19日
Wei Xia,Quanxue Gao,Ming Yang,Xinbo Gao
0+阅读 · 10月15日
Filippo Maria Bianchi,Daniele Grattarola,Cesare Alippi
22+阅读 · 2020年6月3日
Xiaotong Zhang,Han Liu,Qimai Li,Xiao-Ming Wu
7+阅读 · 2019年6月4日
Bryan Wilder,Eric Ewing,Bistra Dilkina,Milind Tambe
6+阅读 · 2019年5月31日
Efficient Parameter-free Clustering Using First Neighbor Relations
M. Saquib Sarfraz,Vivek Sharma,Rainer Stiefelhagen
3+阅读 · 2019年2月28日
Attributed Network Embedding for Incomplete Structure Information
Chengbin Hou,Shan He,Ke Tang
3+阅读 · 2018年11月28日
Sambaran Bandyopadhyay,Lokesh N,M. N. Murty
5+阅读 · 2018年11月19日
Towards Scalable Spectral Clustering via Spectrum-Preserving Sparsification
Yongyu Wang,Zhuo Feng
4+阅读 · 2018年10月11日
Weiyi Liu,Zhining Liu,Toyotaro Suzumura,Guangmin Hu
3+阅读 · 2018年4月17日
相关资讯
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
6+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
6+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
29+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
23+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
3+阅读 · 2017年8月6日
Top