The Orienteering Problem (OP) is a well-studied routing problem that has been extended to incorporate uncertainties, reflecting stochastic or dynamic travel costs, prize-collection costs, and prizes. Existing approaches may, however, be inefficient in real-world applications due to insufficient modeling knowledge and initially unknowable parameters in online scenarios. Thus, we propose the Uncertain and Dynamic Orienteering Problem (UDOP), modeling travel costs as distributions with unknown and time-variant parameters. UDOP also associates uncertain travel costs with dynamic prizes and prize-collection costs for its objective and budget constraints. To address UDOP, we develop an ADaptive Approach for Probabilistic paThs - ADAPT, that iteratively performs 'execution' and 'online planning' based on an initial 'offline' solution. The execution phase updates system status and records online cost observations. The online planner employs a Bayesian approach to adaptively estimate power consumption and optimize path sequence based on safety beliefs. We evaluate ADAPT in a practical Unmanned Aerial Vehicle (UAV) charging scheduling problem for Wireless Rechargeable Sensor Networks. The UAV must optimize its path to recharge sensor nodes efficiently while managing its energy under uncertain conditions. ADAPT maintains comparable solution quality and computation time while offering superior robustness. Extensive simulations show that ADAPT achieves a 100% Mission Success Rate (MSR) across all tested scenarios, outperforming comparable heuristic-based and frequentist approaches that fail up to 70% (under challenging conditions) and averaging 67% MSR, respectively. This work advances the field of OP with uncertainties, offering a reliable and efficient approach for real-world applications in uncertain and dynamic environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员