Medical question answering (QA) requires extensive access to domain-specific knowledge. A promising direction is to enhance large language models (LLMs) with external knowledge retrieved from medical corpora or parametric knowledge stored in model parameters. Existing approaches typically fall into two categories: Retrieval-Augmented Generation (RAG), which grounds model reasoning on externally retrieved evidence, and Generation-Augmented Generation (GAG), which depends solely on the models internal knowledge to generate contextual documents. However, RAG often suffers from noisy or incomplete retrieval, while GAG is vulnerable to hallucinated or inaccurate information due to unconstrained generation. Both issues can mislead reasoning and undermine answer reliability. To address these challenges, we propose MedRGAG, a unified retrieval-generation augmented framework that seamlessly integrates external and parametric knowledge for medical QA. MedRGAG comprises two key modules: Knowledge-Guided Context Completion (KGCC), which directs the generator to produce background documents that complement the missing knowledge revealed by retrieval; and Knowledge-Aware Document Selection (KADS), which adaptively selects an optimal combination of retrieved and generated documents to form concise yet comprehensive evidence for answer generation. Extensive experiments on five medical QA benchmarks demonstrate that MedRGAG achieves a 12.5% improvement over MedRAG and a 4.5% gain over MedGENIE, highlighting the effectiveness of unifying retrieval and generation for knowledge-intensive reasoning. Our code and data are publicly available at https://anonymous.4open.science/r/MedRGAG


翻译:医疗问答(QA)需要广泛获取领域特定知识。一个前景广阔的方向是通过从医疗语料库中检索的外部知识或存储在模型参数中的参数化知识来增强大语言模型(LLM)。现有方法通常分为两类:检索增强生成(RAG),其将模型推理建立在外部检索的证据之上;以及生成增强生成(GAG),其完全依赖模型的内部知识来生成上下文文档。然而,RAG常常受到检索结果噪声大或不完整的困扰,而GAG则由于无约束的生成容易产生幻觉或不准确的信息。这两个问题都可能误导推理并损害答案的可靠性。为应对这些挑战,我们提出了MedRGAG,一个统一的检索-生成增强框架,它将外部知识与参数化知识无缝集成用于医疗QA。MedRGAG包含两个关键模块:知识引导的上下文补全(KGCC),其引导生成器产生背景文档以补充检索所揭示的缺失知识;以及知识感知的文档选择(KADS),其自适应地选择检索文档与生成文档的最优组合,以形成简洁而全面的证据用于答案生成。在五个医疗QA基准测试上的大量实验表明,MedRGAG相比MedRAG实现了12.5%的性能提升,相比MedGENIE取得了4.5%的增益,这突显了统一检索与生成对于知识密集型推理的有效性。我们的代码和数据已在 https://anonymous.4open.science/r/MedRGAG 公开提供。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员