Decomposable graphical models, also known as perfect DAG models, play a fundamental role in standard approaches to probabilistic inference via graph representations in modern machine learning and statistics. However, such models are limited by the assumption that the data-generating distribution does not entail strictly context-specific conditional independence relations. The family of staged tree models generalizes DAG models so as to accommodate context-specific knowledge. We provide a new characterization of perfect discrete DAG models in terms of their staged tree representations. This characterization identifies the family of balanced staged trees as the natural generalization of discrete decomposable models to the context-specific setting.


翻译:可分解的图形模型,又称完美的DAG模型,在通过现代机器学习和统计中的图示表达方式进行概率推论的标准方法中发挥着根本作用,但是,这些模型受到以下假设的限制:数据生成分布并不涉及严格针对具体情况的有条件独立关系。分阶段的树模型的组合将DAG模型加以概括,以适应具体情况的知识。我们从分阶段的树木表述角度对完美的离散的DAG模型作了新的定性。这种定性将平衡的分阶段树木组合确定为离散、不相容的模型与特定背景环境的自然概括。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
114+阅读 · 2021年4月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员