Guided by the theory of graph limits, we investigate a variant of the cut metric for limit objects of sequences of discrete probability distributions. Apart from establishing basic results, we introduce a natural operation called {\em pinning} on the space of limit objects and show how this operation yields a canonical cut metric approximation to a given probability distribution akin to the weak regularity lemma for graphons. We also establish the cut metric continuity of basic operations such as taking product measures.


翻译:在图形限制理论的指导下,我们调查了限制离散概率分布序列物体的削减指标的变体。除了确定基本结果外,我们还在限制物体空间上引入了一种称为 ~ em pinning} 的自然操作, 并展示这种操作如何产生一种卡通截线近似于像软硬石图的常规性列马的某种概率分布。 我们还建立了基本操作的削减指标连续性, 如采取产品措施。

0
下载
关闭预览

相关内容

Beginner's All-purpose Symbolic Instruction Code(初学者通用的符号指令代码),刚开始被作者写做 BASIC,后来被微软广泛地叫做 Basic 。
专知会员服务
51+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员