The Capacitated Vehicle Routing Problem (CVRP) is one of the most extensively studied problems in combinatorial optimization. According to the property of the demand of customers, we distinguish three variants of CVRP: unit-demand, splittable and unsplittable. We consider $k$-CVRP in general metrics and general graphs, where $k$ is the capacity of the vehicle and all the three versions are APX-hard for each fixed $k\geq 3$. In this paper, we give a $(5/2-\Theta(\sqrt{1/k}))$-approximation algorithm for splittable and unit-demand $k$-CVRP and a $(5/2+\ln2-\Theta(\sqrt{1/k}))$-approximation algorithm for unsplittable $k$-CVRP. Our approximation ratio is better than all previous results for $k$ smaller than a sufficiently large value, say $k\leq 1.7\times 10^7$. For small $k$, we also design independent elegant algorithms with further improvements. For the splittable and unit-demand cases, we improve the ratio from $1.792$ to $1.500$ for $k=3$, and from $1.750$ to $1.500$ for $k=4$ too. For the unsplittable case, we improve the ratio from $1.792$ to $1.500$ for $k=3$, from $2.051$ to $1.750$ for $k=4$, and from $2.249$ to $2.157$ for $k=5$. The approximation ratio for $k=3$ also surprisingly achieve the same ratio for the splittable case. Note that for small $k$ such as $3$, $4$ and $5$, some previous results have also been kept for decades. Our techniques, such as the EX-ITP method -- an extension of the classic ITP method, has potential to improve algorithms for more routing problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员