We study the problem of nonparametric two-sample testing using the sliced Wasserstein (SW) distance. While prior theoretical and empirical work indicates that the SW distance offers a promising balance between strong statistical guarantees and computational efficiency, its theoretical foundations for hypothesis testing remain limited. We address this gap by proposing a permutation-based SW test and analyzing its performance. The test inherits finite-sample Type I error control from the permutation principle. Moreover, we establish non-asymptotic power bounds and show that the procedure achieves the minimax separation rate $n^{-1/2}$ over multinomial and bounded-support alternatives, matching the optimal guarantees of kernel-based tests while building on the geometric foundations of Wasserstein distances. Our analysis further quantifies the trade-off between the number of projections and statistical power. Finally, numerical experiments demonstrate that the test combines finite-sample validity with competitive power and scalability, and -- unlike kernel-based tests, which require careful kernel tuning -- it performs consistently well across all scenarios we consider.


翻译:本研究探讨了利用切片Wasserstein(SW)距离进行非参数双样本检验的问题。尽管先前的理论与实证研究表明,SW距离在强统计保证与计算效率之间提供了良好的平衡,但其在假设检验方面的理论基础仍较为有限。我们通过提出一种基于置换的SW检验方法并分析其性能来填补这一空白。该检验方法基于置换原理继承了有限样本下的第一类错误控制能力。此外,我们建立了非渐近的功效界,并证明该方法在多项分布和有界支撑备择假设下达到了极小极大分离率$n^{-1/2}$,与基于核的检验方法的最优保证相匹配,同时建立在Wasserstein距离的几何基础之上。我们的分析进一步量化了投影数量与统计功效之间的权衡关系。最后,数值实验表明,该检验方法结合了有限样本有效性、具有竞争力的功效及可扩展性,并且——与需要精细核调优的基于核的检验方法不同——在我们考虑的所有场景中均表现出一致的良好性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员