We design and implement two single-pass semi-streaming algorithms for the maximum weight $k$-disjoint matching ($k$-DM) problem. Given an integer $k$, the $k$-DM problem is to find $k$ pairwise edge-disjoint matchings such that the sum of the weights of the matchings is maximized. For $k \geq 2$, this problem is NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of the problem and is $\frac{1}{3+\varepsilon}$-approximate. We also develop an approximation preserving reduction from $k$-DM to the maximum weight $b$-matching problem. Leveraging this reduction and an existing semi-streaming $b$-matching algorithm, we design a $\frac{k}{(2+\varepsilon)(k+1)}$-approximate semi-streaming algorithm for $k$-DM. For any constant $\varepsilon > 0$, both of these algorithms require $O(nk \log_{1+\varepsilon}^2 n)$ bits of space. To the best of our knowledge, this is the first study of semi-streaming algorithms for the $k$-DM problem. We compare our two algorithms to state-of-the-art offline algorithms on 82 real-world and synthetic test problems. On the smaller instances, our streaming algorithms used significantly less memory (ranging from 6$\times$ to 114$\times$ less) and were faster in runtime than the offline algorithms. Our solutions were often within 5\% of the best weights from the offline algorithms. On a collection of six large graphs with a memory limit of 1 TB and with $k=8$, the offline algorithms terminated only on one graph (mycielskian20). The best offline algorithm on this instance required 640 GB of memory and 20 minutes to complete. In contrast, our slowest streaming algorithm for this instance took under four minutes and produced a matching that was 18\% better in weight, using only 1.4 GB of memory.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月19日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员