We study the $d$-dimensional Vector Bin Packing ($d$VBP) problem, a generalization of Bin Packing with central applications in resource allocation and scheduling. In $d$VBP, we are given a set of items, each of which is characterized by a $d$-dimensional volume vector; the objective is to partition the items into a minimum number of subsets (bins), such that the total volume of items in each subset is at most $1$ in each dimension. Our main result is an asymptotic approximation algorithm for $d$VBP that yields a ratio of $(1+\ln d-\chi(d) +\varepsilon)$ for all $d \in \mathbb{N}$ and any $\varepsilon > 0$; here, $\chi(d)$ is some strictly positive function. This improves upon the best known asymptotic ratio of $ \left(1+ \ln d +\varepsilon\right)$ due to Bansal, Caprara and Sviridenko (SICOMP 2010) for any $d >3$. By slightly modifying our algorithm to include an initial matching phase and applying a tighter analysis we obtain an asymptotic approximation ratio of $\left(\frac{4}{3}+\varepsilon\right)$ for the special case of $d=2$, thus substantially improving the previous best ratio of $\left(\frac{3}{2}+\varepsilon\right)$ due to Bansal, Elias and Khan (SODA 2016). Our algorithm iteratively solves a configuration LP relaxation for the residual instance (from previous iterations) and samples a small number of configurations based on the solution for the configuration LP. While iterative rounding was already used by Karmarkar and Karp (FOCS 1982) to establish their celebrated result for classic (one-dimensional) Bin Packing, iterative randomized rounding is used here for the first time in the context of (Vector) Bin Packing. Our results show that iterative randomized rounding is a powerful tool for approximating $d$VBP, leading to simple algorithms with improved approximation guarantees.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
158+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月12日
Arxiv
0+阅读 · 2023年6月9日
Arxiv
0+阅读 · 2023年6月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员