组合优化是计算机视觉的常用方法。例如,在诸如语义分割、人体姿态估计和动作识别等应用中,为解决条件随机域(CRFs)中的推理问题而编写的程序可以生成与图像视觉特征一致的结构化输出。然而,在CRFs中求解推理通常是棘手的,而近似方法在计算上要求很高,并且仅限于一元的、成对的和手工制作的高阶势形式。在这篇论文中,我们证明了我们可以学习程序启发式。策略,用于解决高阶CRFs中推理任务的语义分割,采用强化学习。我们的方法有效地解决了推理任务,而没有对势的形式施加任何约束。我们在Pascal VOC和MOTS数据集上展示了引人注目的结果。

成为VIP会员查看完整内容
0
32

相关内容

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers. CVPR 2020 will take place at The Washington State Convention Center in Seattle, WA, from June 16 to June 20, 2020. http://cvpr2020.thecvf.com/

导航是移动机器人所需要的最基本的功能之一,允许它们从一个源穿越到一个目的地。传统的办法严重依赖于预先确定的地图的存在,这种地图的取得时间和劳力都很昂贵。另外,地图在获取时是准确的,而且由于环境的变化会随着时间的推移而退化。我们认为,获取高质量地图的严格要求从根本上限制了机器人系统在动态世界中的可实现性。本论文以无地图导航的范例为动力,以深度强化学习(DRL)的最新发展为灵感,探讨如何开发实用的机器人导航。

DRL的主要问题之一是需要具有数百万次重复试验的不同实验设置。这显然是不可行的,从一个真实的机器人通过试验和错误,所以我们反而从一个模拟的环境学习。这就引出了第一个基本问题,即弥合从模拟环境到真实环境的现实差距,该问题将在第3章讨论。我们把重点放在单眼视觉避障的特殊挑战上,把它作为一个低级的导航原语。我们开发了一种DRL方法,它在模拟世界中训练,但可以很好地推广到现实世界。

在现实世界中限制移动机器人采用DRL技术的另一个问题是训练策略的高度差异。这导致了较差的收敛性和较低的整体回报,由于复杂和高维搜索空间。在第4章中,我们利用简单的经典控制器为DRL的局部导航任务提供指导,避免了纯随机的初始探索。我们证明,这种新的加速方法大大减少了样本方差,并显著增加了可实现的平均回报。

我们考虑的最后一个挑战是无上限导航的稀疏视觉制导。在第五章,我们提出了一种创新的方法来导航基于几个路点图像,而不是传统的基于视频的教学和重复。我们证明,在模拟中学习的策略可以直接转移到现实世界,并有能力很好地概括到不可见的场景与环境的最小描述。

我们开发和测试新的方法,以解决障碍规避、局部引导和全球导航等关键问题,实现我们的愿景,实现实际的机器人导航。我们将展示如何将DRL作为一种强大的无模型方法来处理这些问题

成为VIP会员查看完整内容
0
43

强化一词来源于实验心理学中对动物学习的研究,它指的是某一事件的发生,与某一反应之间有恰当的关系,而这一事件往往会增加该反应在相同情况下再次发生的可能性。虽然心理学家没有使用“强化学习”这个术语,但它已经被人工智能和工程领域的理论家广泛采用,用来指代基于这一强化原理的学习任务和算法。最简单的强化学习方法使用的是一个常识,即如果一个行为之后出现了一个令人满意的状态,或者一个状态的改善,那么产生该行为的倾向就会得到加强。强化学习的概念在工程领域已经存在了几十年(如Mendel和McClaren 1970),在人工智能领域也已经存在了几十年(Minsky 1954, 1961;撒母耳1959;图灵1950)。然而,直到最近,强化学习方法的发展和应用才在这些领域占据了大量的研究人员。激发这种兴趣的是两个基本的挑战:1) 设计能够在复杂动态环境中在不确定性下运行的自主机器人代理,2) 为非常大规模的动态决策问题找到有用的近似解。

成为VIP会员查看完整内容
0
136

在需要平衡性能和参数效率的应用中,选择深度神经网络结构是一个基本问题。标准方法依赖于特定数据集上的特别工程或计算上昂贵的验证。相反,我们试图通过网络的内在能力来量化网络的独特性和健壮性,从而在不需要任何数据的情况下进行有效的架构比较。基于深度学习和稀疏逼近之间的理论联系,我们提出了深度框架潜力:一种与表征稳定性近似相关的相干性度量,但具有仅依赖于网络结构的最小值。这为联合量化架构超参数(如深度、宽度和跳过连接)的贡献提供了一个框架。我们验证了它作为模型选择标准的作用,并证明了它与各种通用残差和密集连接的网络架构上的泛化误差之间的相关性。

成为VIP会员查看完整内容
0
16

当对一系列学习问题进行优化时,卷积神经网络会经历灾难性的遗忘:当满足当前训练示例的目标时,它们在以前任务中的性能会急剧下降。在这项工作中,我们介绍了一个基于条件计算的新的框架来解决这个问题。

成为VIP会员查看完整内容
0
11

近年来,许多手工设计和搜索的网络被应用于语义分割。然而,以前的工作打算在预定义的静态架构中处理各种规模的输入,如FCN、U-Net和DeepLab系列。本文研究了一种概念上的新方法来缓解语义表示中的尺度差异,即动态路由。该框架根据图像的尺度分布,生成与数据相关的路径。为此,提出了一种可微选通函数——软条件门,用于动态选择尺度变换路径。此外,通过对门控函数进行预算约束,可以通过端到端方式进一步降低计算成本。我们进一步放宽了网络级路由空间,以支持每个转发中的多路径传播和跳转连接,带来了可观的网络容量。为了证明动态特性的优越性,我们比较了几种静态架构,它们可以作为路由空间中的特殊情况进行建模。为了证明动态框架的有效性,我们在Cityscapes和PASCAL VOC 2012上进行了大量的实验。代码在此https://github.com/yanwei-li/DynamicRouting

成为VIP会员查看完整内容
0
23
小贴士
相关资讯
相关论文
Aravind Srinivas,Michael Laskin,Pieter Abbeel
10+阅读 · 2020年4月28日
Tuomas Haarnoja,Aurick Zhou,Sehoon Ha,Jie Tan,George Tucker,Sergey Levine
4+阅读 · 2018年12月26日
Bo-Jian Hou,Zhi-Hua Zhou
16+阅读 · 2018年10月25日
Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning
Tom Zahavy,Matan Haroush,Nadav Merlis,Daniel J. Mankowitz,Shie Mannor
4+阅读 · 2018年9月6日
Vinicius Zambaldi,David Raposo,Adam Santoro,Victor Bapst,Yujia Li,Igor Babuschkin,Karl Tuyls,David Reichert,Timothy Lillicrap,Edward Lockhart,Murray Shanahan,Victoria Langston,Razvan Pascanu,Matthew Botvinick,Oriol Vinyals,Peter Battaglia
4+阅读 · 2018年6月5日
Sham Kakade,Mengdi Wang,Lin F. Yang
3+阅读 · 2018年4月25日
Mohammadhosein Hasanbeig,Alessandro Abate,Daniel Kroening
5+阅读 · 2018年4月22日
Xiangyu Zhao,Liang Zhang,Zhuoye Ding,Dawei Yin,Yihong Zhao,Jiliang Tang
12+阅读 · 2018年1月5日
Andrew K. Lampinen,James L. McClelland
5+阅读 · 2017年10月27日
Shafin Rahman,Salman H. Khan,Fatih Porikli
3+阅读 · 2017年10月26日
Top