强化一词来源于实验心理学中对动物学习的研究,它指的是某一事件的发生,与某一反应之间有恰当的关系,而这一事件往往会增加该反应在相同情况下再次发生的可能性。虽然心理学家没有使用“强化学习”这个术语,但它已经被人工智能和工程领域的理论家广泛采用,用来指代基于这一强化原理的学习任务和算法。最简单的强化学习方法使用的是一个常识,即如果一个行为之后出现了一个令人满意的状态,或者一个状态的改善,那么产生该行为的倾向就会得到加强。强化学习的概念在工程领域已经存在了几十年(如Mendel和McClaren 1970),在人工智能领域也已经存在了几十年(Minsky 1954, 1961;撒母耳1959;图灵1950)。然而,直到最近,强化学习方法的发展和应用才在这些领域占据了大量的研究人员。激发这种兴趣的是两个基本的挑战:1) 设计能够在复杂动态环境中在不确定性下运行的自主机器人代理,2) 为非常大规模的动态决策问题找到有用的近似解。

成为VIP会员查看完整内容
0
118

相关内容

在复杂的以人为中心的系统中,每天的决策都具有决策相关信息不完全的特点。现有决策理论的主要问题是,它们没有能力处理概率和事件不精确的情况。在这本书中,我们描述了一个新的理论的决策与不完全的信息。其目的是将决策分析和经济行为的基础从领域二价逻辑转向领域模糊逻辑和Z约束,从行为决策的外部建模转向组合状态的框架。

这本书将有助于在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学的专业人员,学者,经理和研究生。

读者:专业人士,学者,管理者和研究生在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学。

成为VIP会员查看完整内容
0
111

强化学习是现在人工智能领域里面最活跃的研究领域之一,它是一种用于学习的计算方法,其中会有一个代理在与复杂的不确定环境交互时试图最大化其所收到的奖励。现在,如果你是一个强化学习的初学者,由 Richard Sutton 和 Andrew Barto 合著的《Reinforcement Learning : An Introduction》可能就是你的最佳选择。这本书提供了关于强化学习的简单明了的关键思想和算法的解释。他们讨论了该领域的知识基础的历史延伸到了最新的发展的应用。

本书全文共分三部分,17章内容

  • 第一部分:列表(Tabular)解决法,第一章描述了强化学习问题具体案例的解决方案,第二章描述了贯穿全书的一般问题制定——有限马尔科夫决策过程,其主要思想包括贝尔曼方程(Bellman equation)和价值函数,第三、四、五章介绍了解决有限马尔科夫决策问题的三类基本方法:动态编程,蒙特卡洛方法、时序差分学习。三者各有其优缺点,第六、七章介绍了上述三类方法如何结合在一起进而达到最佳效果。第六章中介绍了可使用适合度轨迹(eligibility traces)把蒙特卡洛方法和时序差分学习的优势整合起来。第七章中表明时序差分学习可与模型学习和规划方法(比如动态编程)结合起来,获得一个解决列表强化学习问题的完整而统一的方案。

  • 第二部分:近似求解法,从某种程度上讲只需要将强化学习方法和已有的泛化方法结合起来。泛化方法通常称为函数逼近,从理论上看,在这些领域中研究过的任何方法都可以用作强化学习算法中的函数逼近器,虽然实际上有些方法比起其它更加适用于强化学习。在强化学习中使用函数逼近涉及一些在传统的监督学习中不常出现的新问题,比如非稳定性(nonstationarity)、引导(bootstrapping)和目标延迟(delayed targets)。这部分的五章中先后介绍这些以及其它问题。首先集中讨论在线(on-policy)训练,而在第九章中的预测案例其策略是给定的,只有其价值函数是近似的,在第十章中的控制案例中最优策略的一个近似已经找到。第十一章讨论函数逼近的离线(off-policy)学习的困难。第十二章将介绍和分析适合度轨迹(eligibility traces)的算法机制,它能在多个案例中显著优化多步强化学习方法的计算特性。这一部分的最后一章将探索一种不同的控制、策略梯度的方法,它能直接逼近最优策略且完全不需要设定近似值函数(虽然如果使用了一个逼近价值函数,效率会高得多)。

  • 第三部分:深层次研究,这部分把眼光放到第一、二部分中介绍标准的强化学习思想之外,简单地概述它们和心理学以及神经科学的关系,讨论一个强化学习应用的采样过程,和一些未来的强化学习研究的活跃前沿。

成为VIP会员查看完整内容
0
73

决策理论是现代人工智能和经济学的基础。本课程主要从统计学的角度,也从哲学的角度,为决策理论打下坚实的基础。本课程有两个目的:

  • 深入了解统计决策理论、实验设计的自动化方法,并将其与人类决策联系起来。
  • 通过开发算法和智能代理的实验,将该理论应用到强化学习和人工智能的实际问题中。

课程可分为两部分。

  • 第一部分,我们介绍了主观概率和效用的概念,以及如何用它们来表示和解决决策问题。然后讨论未知参数的估计和假设检验。最后,我们讨论了顺序抽样、顺序实验,以及更一般的顺序决策。

  • 第二部分是不确定性下的决策研究,特别是强化学习和专家咨询学习。首先,我们研究几个有代表性的统计模型。然后,我们给出了使用这些模型做出最优决策的算法的概述。最后,我们来看看学习如何根据专家的建议来行动的问题,这个领域最近在在线广告、游戏树搜索和优化方面有很多应用。

成为VIP会员查看完整内容
0
86

题目:Applied Reinforcement Learning with Python With OpenAI Gym, Tensorflow, and Keras

深入研究强化学习算法,并通过Python将它们应用到不同的用例中。这本书涵盖了重要的主题,如策略梯度和Q学习,并利用框架,如Tensorflow, Keras,和OpenAI Gym。

Python中的应用增强学习向您介绍了强化学习(RL)算法背后的理论和用于实现它们的代码。您将在指导下了解OpenAI Gym的特性,从使用标准库到创建自己的环境,然后了解如何构建强化学习问题,以便研究、开发和部署基于rl的解决方案。

你将学习:

  • 用Python实现强化学习
  • 使用AI框架,如OpenAI Gym、Tensorflow和Keras
  • 通过云资源部署和培训基于增强学习的解决方案
  • 应用强化学习的实际应用

这本书是给谁看的: 数据科学家、机器学习工程师和软件工程师熟悉机器学习和深度学习的概念。

地址:

https://www.springerprofessional.de/en/applied-reinforcement-learning-with-python/17098944

目录:

第1章 强化学习导论

在过去的一年里,深度学习技术的不断扩散和发展给各个行业带来了革命性的变化。毫无疑问,这个领域最令人兴奋的部分之一是强化学习(RL)。这本身往往是许多通用人工智能应用程序的基础,例如学习玩视频游戏或下棋的软件。强化学习的好处是,假设可以将问题建模为包含操作、环境和代理的框架,那么代理就可以熟悉大量的任务。假设,解决问题的范围可以从简单的游戏,更复杂的3d游戏,自动驾驶汽车教学如何挑选和减少乘客在各种不同的地方以及教一个机械手臂如何把握对象和地点在厨房柜台上。

第二章 强化学习算法

读者应该知道,我们将利用各种深度学习和强化学习的方法在这本书。然而,由于我们的重点将转移到讨论实现和这些算法如何在生产环境中工作,我们必须花一些时间来更详细地介绍算法本身。因此,本章的重点将是引导读者通过几个强化学习算法的例子,通常应用和展示他们在使用Open AI gym 不同的问题。

第三章 强化学习算法:Q学习及其变体

随着策略梯度和Actor-Critic模型的初步讨论的结束,我们现在可以讨论读者可能会发现有用的替代深度学习算法。具体来说,我们将讨论Q学习、深度Q学习以及深度确定性策略梯度。一旦我们了解了这些,我们就可以开始处理更抽象的问题,更具体的领域,这将教会用户如何处理不同任务的强化学习。

第四章 通过强化学习做市场

除了在许多书中发现的强化学习中的一些标准问题之外,最好看看那些答案既不客观也不完全解决的领域。在金融领域,尤其是强化学习领域,最好的例子之一就是做市。我们将讨论学科本身,提出一些不基于机器学习的基线方法,然后测试几种基于强化学习的方法。

第五章 自定义OpenAI强化学习环境

在我们的最后一章,我们将专注于Open AI Gym,但更重要的是尝试理解我们如何创建我们自己的自定义环境,这样我们可以处理更多的典型用例。本章的大部分内容将集中在我对开放人工智能的编程实践的建议,以及我如何编写这个软件的建议。最后,在我们完成创建环境之后,我们将继续集中精力解决问题。对于这个例子,我们将集中精力尝试创建和解决一个新的视频游戏。

成为VIP会员查看完整内容
0
71
小贴士
相关主题
相关VIP内容
专知会员服务
111+阅读 · 2020年6月24日
专知会员服务
48+阅读 · 2020年3月2日
《强化学习—使用 Open AI、TensorFlow和Keras实现》174页pdf
专知会员服务
84+阅读 · 2020年3月1日
【强化学习】深度强化学习初学者指南
专知会员服务
85+阅读 · 2019年12月14日
MIT新书《强化学习与最优控制》
专知会员服务
108+阅读 · 2019年10月9日
相关资讯
强化学习的未来——第一部分
AI研习社
5+阅读 · 2019年1月2日
一文了解强化学习
AI100
8+阅读 · 2018年8月20日
论强化学习的根本缺陷
AI科技评论
4+阅读 · 2018年7月24日
【强化学习】强化学习/增强学习/再励学习介绍
产业智能官
9+阅读 · 2018年2月23日
关于强化学习(附代码,练习和解答)
深度学习
22+阅读 · 2018年1月30日
【强化学习】易忽略的强化学习知识之基础知识及MDP
产业智能官
15+阅读 · 2017年12月22日
【强化学习】如何开启强化学习的大门?
产业智能官
12+阅读 · 2017年9月10日
相关论文
Davide Abati,Jakub Tomczak,Tijmen Blankevoort,Simone Calderara,Rita Cucchiara,Babak Ehteshami Bejnordi
5+阅读 · 2020年3月31日
Yu Cheng,Mo Yu,Xiaoxiao Guo,Bowen Zhou
10+阅读 · 2019年1月26日
Risk-Aware Active Inverse Reinforcement Learning
Daniel S. Brown,Yuchen Cui,Scott Niekum
4+阅读 · 2019年1月8日
IRLAS: Inverse Reinforcement Learning for Architecture Search
Minghao Guo,Zhao Zhong,Wei Wu,Dahua Lin,Junjie Yan
4+阅读 · 2018年12月14日
Borja Ibarz,Jan Leike,Tobias Pohlen,Geoffrey Irving,Shane Legg,Dario Amodei
4+阅读 · 2018年11月15日
Hierarchical Deep Multiagent Reinforcement Learning
Hongyao Tang,Jianye Hao,Tangjie Lv,Yingfeng Chen,Zongzhang Zhang,Hangtian Jia,Chunxu Ren,Yan Zheng,Changjie Fan,Li Wang
4+阅读 · 2018年9月25日
Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning
Tom Zahavy,Matan Haroush,Nadav Merlis,Daniel J. Mankowitz,Shie Mannor
4+阅读 · 2018年9月6日
Abhishek Gupta,Benjamin Eysenbach,Chelsea Finn,Sergey Levine
6+阅读 · 2018年6月12日
Ermo Wei,Drew Wicke,David Freelan,Sean Luke
10+阅读 · 2018年4月25日
Mohammadhosein Hasanbeig,Alessandro Abate,Daniel Kroening
5+阅读 · 2018年4月22日
Top