We present new intuitions and theoretical assessments of the emergence of disentangled representation in variational autoencoders. Taking a rate-distortion theory perspective, we show the circumstances under which representations aligned with the underlying generative factors of variation of data emerge when optimising the modified ELBO bound in $\beta$-VAE, as training progresses. From these insights, we propose a modification to the training regime of $\beta$-VAE, that progressively increases the information capacity of the latent code during training. This modification facilitates the robust learning of disentangled representations in $\beta$-VAE, without the previous trade-off in reconstruction accuracy.

3
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc

Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.

0
6
下载
预览

User behavior data in recommender systems are driven by the complex interactions of many latent factors behind the users' decision making processes. The factors are highly entangled, and may range from high-level ones that govern user intentions, to low-level ones that characterize a user's preference when executing an intention. Learning representations that uncover and disentangle these latent factors can bring enhanced robustness, interpretability, and controllability. However, learning such disentangled representations from user behavior is challenging, and remains largely neglected by the existing literature. In this paper, we present the MACRo-mIcro Disentangled Variational Auto-Encoder (MacridVAE) for learning disentangled representations from user behavior. Our approach achieves macro disentanglement by inferring the high-level concepts associated with user intentions (e.g., to buy a shirt or a cellphone), while capturing the preference of a user regarding the different concepts separately. A micro-disentanglement regularizer, stemming from an information-theoretic interpretation of VAEs, then forces each dimension of the representations to independently reflect an isolated low-level factor (e.g., the size or the color of a shirt). Empirical results show that our approach can achieve substantial improvement over the state-of-the-art baselines. We further demonstrate that the learned representations are interpretable and controllable, which can potentially lead to a new paradigm for recommendation where users are given fine-grained control over targeted aspects of the recommendation lists.

0
4
下载
预览

Both generative adversarial network models and variational autoencoders have been widely used to approximate probability distributions of datasets. Although they both use parametrized distributions to approximate the underlying data distribution, whose exact inference is intractable, their behaviors are very different. In this report, we summarize our experiment results that compare these two categories of models in terms of fidelity and mode collapse. We provide a hypothesis to explain their different behaviors and propose a new model based on this hypothesis. We further tested our proposed model on MNIST dataset and CelebA dataset.

0
6
下载
预览

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

0
11
下载
预览

We marry two powerful ideas: deep representation learning for visual recognition and language understanding, and symbolic program execution for reasoning. Our neural-symbolic visual question answering (NS-VQA) system first recovers a structural scene representation from the image and a program trace from the question. It then executes the program on the scene representation to obtain an answer. Incorporating symbolic structure as prior knowledge offers three unique advantages. First, executing programs on a symbolic space is more robust to long program traces; our model can solve complex reasoning tasks better, achieving an accuracy of 99.8% on the CLEVR dataset. Second, the model is more data- and memory-efficient: it performs well after learning on a small number of training data; it can also encode an image into a compact representation, requiring less storage than existing methods for offline question answering. Third, symbolic program execution offers full transparency to the reasoning process; we are thus able to interpret and diagnose each execution step.

0
3
下载
预览

Batch Normalization (BN) improves both convergence and generalization in training neural networks. This work understands these phenomena theoretically. We analyze BN by using a basic block of neural networks, consisting of a kernel layer, a BN layer, and a nonlinear activation function. This basic network helps us understand the impacts of BN in three aspects. First, by viewing BN as an implicit regularizer, BN can be decomposed into population normalization (PN) and gamma decay as an explicit regularization. Second, learning dynamics of BN and the regularization show that training converged with large maximum and effective learning rate. Third, generalization of BN is explored by using statistical mechanics. Experiments demonstrate that BN in convolutional neural networks share the same traits of regularization as the above analyses.

0
4
下载
预览

Autoencoders provide a powerful framework for learning compressed representations by encoding all of the information needed to reconstruct a data point in a latent code. In some cases, autoencoders can "interpolate": By decoding the convex combination of the latent codes for two datapoints, the autoencoder can produce an output which semantically mixes characteristics from the datapoints. In this paper, we propose a regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network which has been trained to recover the mixing coefficient from interpolated data. We then develop a simple benchmark task where we can quantitatively measure the extent to which various autoencoders can interpolate and show that our regularizer dramatically improves interpolation in this setting. We also demonstrate empirically that our regularizer produces latent codes which are more effective on downstream tasks, suggesting a possible link between interpolation abilities and learning useful representations.

0
3
下载
预览

Recurrent models for sequences have been recently successful at many tasks, especially for language modeling and machine translation. Nevertheless, it remains challenging to extract good representations from these models. For instance, even though language has a clear hierarchical structure going from characters through words to sentences, it is not apparent in current language models. We propose to improve the representation in sequence models by augmenting current approaches with an autoencoder that is forced to compress the sequence through an intermediate discrete latent space. In order to propagate gradients though this discrete representation we introduce an improved semantic hashing technique. We show that this technique performs well on a newly proposed quantitative efficiency measure. We also analyze latent codes produced by the model showing how they correspond to words and phrases. Finally, we present an application of the autoencoder-augmented model to generating diverse translations.

0
6
下载
预览

Amortized inference has led to efficient approximate inference for large datasets. The quality of posterior inference is largely determined by two factors: a) the ability of the variational distribution to model the true posterior and b) the capacity of the recognition network to generalize inference over all datapoints. We analyze approximate inference in variational autoencoders in terms of these factors. We find that suboptimal inference is often due to amortizing inference rather than the limited complexity of the approximating distribution. We show that this is due partly to the generator learning to accommodate the choice of approximation. Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.

0
3
下载
预览
小贴士
相关论文
Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image
Yinyu Nie,Xiaoguang Han,Shihui Guo,Yujian Zheng,Jian Chang,Jian Jun Zhang
6+阅读 · 2月27日
Learning Disentangled Representations for Recommendation
Jianxin Ma,Chang Zhou,Peng Cui,Hongxia Yang,Wenwu Zhu
4+阅读 · 2019年10月31日
TinyBERT: Distilling BERT for Natural Language Understanding
Xiaoqi Jiao,Yichun Yin,Lifeng Shang,Xin Jiang,Xiao Chen,Linlin Li,Fang Wang,Qun Liu
8+阅读 · 2019年9月23日
A Probe into Understanding GAN and VAE models
Jingzhao Zhang,Lu Mi,Macheng Shen
6+阅读 · 2018年12月13日
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
David Bau,Jun-Yan Zhu,Hendrik Strobelt,Bolei Zhou,Joshua B. Tenenbaum,William T. Freeman,Antonio Torralba
11+阅读 · 2018年12月8日
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
Kexin Yi,Jiajun Wu,Chuang Gan,Antonio Torralba,Pushmeet Kohli,Joshua B. Tenenbaum
3+阅读 · 2018年10月4日
Towards Understanding Regularization in Batch Normalization
Ping Luo,Xinjiang Wang,Wenqi Shao,Zhanglin Peng
4+阅读 · 2018年9月27日
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
David Berthelot,Colin Raffel,Aurko Roy,Ian Goodfellow
3+阅读 · 2018年7月19日
Łukasz Kaiser,Samy Bengio
6+阅读 · 2018年1月29日
Chris Cremer,Xuechen Li,David Duvenaud
3+阅读 · 2018年1月10日
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
7+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
5+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
19+阅读 · 2018年9月12日
vae 相关论文 表示学习 2
CreateAMind
5+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
9+阅读 · 2018年9月6日
互信息论文笔记
CreateAMind
12+阅读 · 2018年8月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
22+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top