【导读】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 在美国纽约举办。Michael Galkin撰写了AAAI2020知识图谱论文相关研究趋势包括:KG-Augmented语言模型,异构KGs中的实体匹配,KG完成和链路预测,基于kg的会话人工智能和问题回答,包括论文,值得查看!

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, Graham Neubig: Latent Relation Language Models. AAAI 2020

  • 潜在关系语言模型:本文提出了一种潜在关系语言模型(LRLMs),这是一类通过知识图谱关系对文档中词语的联合分布及其所包含的实体进行参数化的语言模型。该模型具有许多吸引人的特性:它不仅提高了语言建模性能,而且能够通过关系标注给定文本的实体跨度的后验概率。实验证明了基于单词的基线语言模型和先前合并知识图谱信息的方法的经验改进。定性分析进一步证明了该模型的学习能力,以预测适当的关系在上下文中。

成为VIP会员查看完整内容
0
122

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

题目: KG-BERT: BERT for Knowledge Graph Completion

摘要: 知识图谱是许多人工智能任务的重要资源,但往往是不完整的。在这项工作中,我们使用预训练的语言模型来对知识图谱进行补全。我们将知识图谱中的三元组视为文本序列,并提出了一种新的框架结构——知识图谱双向编码方向转换器(KG-BERT)来对这些三元组进行建模。该方法以一个三元组的实体描述和关系描述作为输入,利用KG-BERT语言模型计算三元组的评分函数。在多个基准知识图谱上的实验结果表明,我们的方法在三元组分类、链接预测和关系预测任务上都能达到最新的性能。

成为VIP会员查看完整内容
0
89

题目: Probability Calibration for Knowledge Graph Embedding Models

摘要: 知识图谱嵌入的研究忽略了概率定标问题。我们展示了流行的嵌入模型确实是未经校准的。这意味着与预测三元组相关的概率估计是不可靠的。摘要针对知识图谱中常见的情况,提出了一种新的校准模型的方法。我们建议在我们的方法的同时使用普拉特尺度和等渗回归。在三个带有地面真值负样本的数据集上进行的实验表明,与使用负样本的黄金标准相比,我们的贡献使模型得到了很好的校准。我们得到的结果显着优于未校准的模型从所有校准方法。我们证明等渗回归提供了最好的整体性能,而不是没有权衡。我们还表明,经过校准的模型不需要定义特定于关系的决策阈值就可以达到最先进的精度。

成为VIP会员查看完整内容
0
24

题目: Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings 在大规模的不完全知识图谱(KGs)上回答复杂的逻辑查询是一项基本而又具有挑战性的任务。最近,解决这个问题的一个很有前景的方法是将KG实体和查询嵌入到向量空间中,这样回答查询的实体就会被嵌入到查询附近。然而,以前的工作将查询建模为向量空间中的单点,这是有问题的,因为一个复杂的查询表示一个可能很大的答案实体集合,但是不清楚如何将这样的集合表示为单点。此外,以前的工作只能处理使用连词和存在量词的查询。使用逻辑分隔处理查询仍然是一个有待解决的问题。在这里,我们提出Query2box,这是一个基于嵌入的框架,用于在大量且不完整的KG中使用、和操作符对任意查询进行推理。,其中框内的一组点对应于查询的一组回答实体。我们证明了连词可以自然地表示为盒子的交叉点,同时也证明了一个否定的结果,即处理拆分需要嵌入的维度与KG实体的数量成比例。但是,通过将查询转换为析取范式,Query2box能够以一种可伸缩的方式处理带有、的任意逻辑查询。我们演示了query2box在两个大型KGs上的有效性,并表明Query2box实现了比现有技术高25%的改进。

成为VIP会员查看完整内容
0
22

题目: Knowledge Graph Embeddings and Explainable AI

摘要: 知识图谱嵌入是一种广泛采用的知识表示方法,它将实体和关系嵌入到向量空间中。在这一章中,我们通过解释知识图谱嵌入是什么,如何生成它们以及如何对它们进行评估,向读者介绍知识图谱嵌入的概念。我们总结了这一领域的最新研究成果,对向量空间中表示知识的方法进行了介绍。在知识表示方面,我们考虑了可解释性问题,并讨论了通过知识图谱嵌入来解释预测的模型和方法。

成为VIP会员查看完整内容
0
64

有关实体及其关系的真实世界事实的知识库是各种自然语言处理任务的有用资源。然而,由于知识库通常是不完整的,因此能够执行知识库补全或链接预测是很有用的。本文全面概述了用于知识库完成的实体和关系的嵌入模型,总结了标准基准数据集上最新的实验结果。

成为VIP会员查看完整内容
0
60

简介: 今年AAAI 2020接收了1591篇论文,其中有140篇是与图相关的。接下来将会介绍几篇与图和知识图谱相关的几篇论文。以下为内容大纲:

  • KG-Augmented Language Models In Diherent Flavours

Hayashi等人在知识图上建立了自然语言生成(NLG)任务的潜在关系语言模型(LRLM)。就是说,模型在每个时间步上要么从词汇表中提取一个单词,要么求助于已知关系。 最终的任务是在给定主题实体的情况下生成连贯且正确的文本。 LRLM利用基础图上的KG嵌入来获取实体和关系表示,以及用于嵌入表面形式的Fasttext。 最后,要参数化流程,需要一个序列模型。作者尝试使用LSTM和Transformer-XL来评估与使用Wikidata批注的Freebase和WikiText链接的WikiFacts上的LRLM。

Liu等人提出了K-BERT,它希望每个句子(如果可能)都用来自某些KG的命名实体和相关(谓词,宾语)对进行注释。 然后,将丰富的句子树线性化为一个新的位置相似嵌入,并用可见性矩阵进行遮罩,该矩阵控制输入的哪些部分在训练过程中可以看到并得到关注。

Bouraoui等人进一步评估了BERT的关系知识,即在给定一对实体(例如,巴黎,法国)的情况下,它是否可以预测正确的关系。 作者指出,BERT在事实和常识性任务中通常是好的,而不是糟糕的非词性任务,并且在形态任务中相当出色。

  • Entity Matching in Heterogeneous KGs

不同的KG具有自己的模型来建模其实体,以前,基于本体的对齐工具仅依靠此类映射来标识相似实体。 今天,我们有GNN只需少量培训即可自动学习此类映射!

Sun等人提出了AliNet,这是一种基于端到端GNN的体系结构,能够对多跳邻域进行聚合以实现实体对齐。 由于架构异质性,由于相似的实体KG的邻域不是同构的,因此任务变得更加复杂。 为了弥补这一点,作者建议关注节点的n跳环境以及具有特定损失函数的TransE样式关系模式。

Xu等人研究了多语言KG(在这种情况下为DBpedia)中的对齐问题,其中基于GNN的方法可能陷入“多对一”的情况,并为给定的目标实体生成多个候选源实体。 作者研究了如何使他们的预测中的GNN编码输出更加确定。

  • Knowledge Graph Completion and Link Prediction

AAAI’20标记并概述了两个增长趋势:神经符号计算与临时性的KG越来越受到关注。

  • KG-based Conversational AI andQuestion Answering

AAAI’20主持了“对话状态跟踪研讨会”(DSTC8)。 该活动聚集了对话AI方面的专家,包括来自Google Assistant,Amazon Alexa和DeepPavlov的人员。在研讨会上,多个专家都提出了对话AI的相关研究方法。

成为VIP会员查看完整内容
Knowledge Graphs @ AAAI 2020 - Michael Galkin - Medium.pdf
0
87

题目

Few-Shot Knowledge Graph Completion

简介

知识图是各种自然语言处理应用的有用资源。以前的KG完成方法需要为每个关系提供大量的训练实例(即头-尾实体对)。实际情况是,对于大多数关系,很少有实体对可用。现有的单镜头学习极限方法普遍适用于少镜头场景,不能充分利用监控信息,但很少有人对KG完工的研究还很少。在这项工作中,我们提出了一个新的少数镜头关系学习模型(FSRL),旨在发现新的关系事实很少镜头参考。FSRL可以有效地从异构图结构中获取知识,聚集少量镜头引用的表示,并为每个关系匹配相似的引用集实体对。在两个公共数据集上进行的大量实验表明,FSRL优于最新技术。

作者

Chuxu Zhang, Meng Jiang,Nitesh V. Chawla,来自圣母大学

Huaxiu Yao, Zhenhui Li,来自宾夕法尼亚州立大学

Chao Huang, 来自JD金融美国公司

成为VIP会员查看完整内容
0
74

论文题目:
Latent Relation Language Models

论文摘要: 在本文中,我们提出了潜在关系语言模型(LRLM),它是一类语言模型,它通过知识图的关系参数化文档中单词和其中出现的实体的联合分布。 该模型具有许多吸引人的属性:它不仅提高了语言建模性能,而且还能够注释实体跨度对于关联文本的后验概率。 实验表明,在基于单词的基准语言模型和结合了知识图谱信息的先前方法上,经验性改进。 定性分析进一步证明了该模型在上下文中学习最佳预测适当关系的能力。

成为VIP会员查看完整内容
0
38

论文摘要:知识图谱嵌入是一种将符号实体和关系投影到连续向量空间的方法,越来越受到人们的重视。以前的方法允许对每个实体或关系进行单一的静态嵌入,忽略它们的内在上下文性质,即。,实体和关系可能出现在不同的图上下文中,因此,它们具有不同的属性。该工作提出了一种新的基于上下文的知识图谱嵌入(CoKE)范式,该范式考虑了这种上下文性质,并学习了动态的、灵活的、完全上下文化的实体和关系嵌入。研究了两类图的上下文:边和路径,它们都被表示为实体和关系的序列。CoKE采用一个序列作为输入,并使用Transformer编码器获得上下文化的表示。因此,这些表现形式自然地适应输入,捕捉实体的上下文含义和其中的关系。通过对各种公共基准的评估,验证了CoKE在链路预测和路径查询应答方面的优越性。在几乎所有情况下,它的性能始终比当前的技术水平更好,或者至少与之相当,特别是在H@10的路径查询应答方面提高了19.7%。

代码链接:[https://github.com/paddlepaddle/models /tree/develop/PaddleKG/CoKE](https://github.com/paddlepaddle/models /tree/develop/PaddleKG/CoKE)

成为VIP会员查看完整内容
0
50
小贴士
相关VIP内容
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
87+阅读 · 2020年2月13日
相关论文
Aidan Hogan,Eva Blomqvist,Michael Cochez,Claudia d'Amato,Gerard de Melo,Claudio Gutierrez,José Emilio Labra Gayo,Sabrina Kirrane,Sebastian Neumaier,Axel Polleres,Roberto Navigli,Axel-Cyrille Ngonga Ngomo,Sabbir M. Rashid,Anisa Rula,Lukas Schmelzeisen,Juan Sequeda,Steffen Staab,Antoine Zimmermann
79+阅读 · 2020年3月4日
Quan Wang,Pingping Huang,Haifeng Wang,Songtai Dai,Wenbin Jiang,Jing Liu,Yajuan Lyu,Yong Zhu,Hua Wu
6+阅读 · 2019年11月6日
Efficiently Embedding Dynamic Knowledge Graphs
Tianxing Wu,Arijit Khan,Huan Gao,Cheng Li
9+阅读 · 2019年10月15日
Domain Representation for Knowledge Graph Embedding
Cunxiang Wang,Feiliang Ren,Zhichao Lin,Chenxv Zhao,Tian Xie,Yue Zhang
9+阅读 · 2019年9月11日
Liang Yao,Chengsheng Mao,Yuan Luo
8+阅读 · 2019年9月11日
Qingheng Zhang,Zequn Sun,Wei Hu,Muhao Chen,Lingbing Guo,Yuzhong Qu
30+阅读 · 2019年6月6日
Xuelu Chen,Muhao Chen,Weijia Shi,Yizhou Sun,Carlo Zaniolo
6+阅读 · 2019年2月26日
DSKG: A Deep Sequential Model for Knowledge Graph Completion
Lingbing Guo,Qingheng Zhang,Weiyi Ge,Wei Hu,Yuzhong Qu
3+阅读 · 2018年12月30日
Tommaso Soru,Stefano Ruberto,Diego Moussallem,Edgard Marx,Diego Esteves,Axel-Cyrille Ngonga Ngomo
7+阅读 · 2018年3月21日
Wenhu Chen,Wenhan Xiong,Xifeng Yan,William Wang
7+阅读 · 2018年3月17日
Top