首先加速介绍R生态系统、编程语言和工具,包括R脚本和RStudio。通过使用许多例子和项目,这本书教你如何将数据导入R,以及如何使用R处理这些数据。一旦基础扎实,《实用R 4》的其余部分将深入具体的项目和例子,从使用R和LimeSurvey运行和分析调查开始。接下来,您将使用R和MouselabWeb执行高级统计分析。然后,您将看到在没有统计信息的情况下R如何工作,包括如何使用R自动化数据格式化、操作、报告和自定义函数。

本书的最后一部分讨论了在服务器上使用R;您将使用R构建一个脚本,该脚本可以运行RStudio服务器并监视报表源的更改,以便在发生更改时向用户发出警报。这个项目包括定期电子邮件提醒和推送通知。最后,您将使用R创建一个定制的个人最重要信息的每日纲要报告,例如天气报告、每日日历、待办事项等等。这演示了如何自动化这样一个过程,以便用户每天早上导航到相同的web页面并获得更新的报告。

你将学到什么

  • 设置并运行R脚本,包括在新机器上的安装以及下载和配置R
  • 使用RStudio Server将任何机器变成可从任何地方访问的强大数据分析平台
  • 编写基本的脚本并修改现有的脚本以满足自己的需要。
  • 在R中创建基本的HTML报告,根据需要插入信息
  • 构建一个基本的R包并发布它

这本书是给谁的

  • 建议您之前接触过统计学、编程和SAS,但不是必需的。
成为VIP会员查看完整内容
0
50

相关内容

本书建立在基本的Python教程的基础上,解释了许多没有被常规覆盖的Python语言特性:从通过利用入口点作为微服务扮演双重角色的可重用控制台脚本,到使用asyncio高效地整理大量来源的数据。通过这种方式,它涵盖了基于类型提示的linting、低开销测试和其他自动质量检查,以演示一个健壮的实际开发过程。

Python的一些功能强大的方面通常用一些设计的示例来描述,这些示例仅作为一个独立示例来解释该特性。通过遵循从原型到生产质量的真实应用程序示例的设计和构建,您不仅将看到各种功能是如何工作的,而且还将看到它们如何作为更大的系统设计过程的一部分进行集成。此外,您还将受益于一些有用的附加说明和库建议,它们是Python会议上问答会议的主要内容,也是讨论现代Python最佳实践和技术的主要内容,以便更好地生成易于维护的清晰代码。

高级Python开发是为已经能用Python编写简单程序的开发人员准备的,这些开发人员希望了解什么时候使用新的和高级语言特性是合适的,并且能够以一种自信的方式这样做。它对于希望升级到更高级别的开发人员和迄今为止使用过较老版本Python的非常有经验的开发人员特别有用。

你将学习

  • 理解异步编程
  • 检查开发插件架构
  • 使用类型注释
  • 回顾测试技术
  • 探索打包和依赖项管理

这本书是给谁的 -已经有Python经验的中高级开发人员。

成为VIP会员查看完整内容
0
118

探索多年来用户研究如何受到一系列学科的影响,如人机交互、可用性、人类学、认知心理学、人体工程学等。本书旨在为用户研究社区做出贡献,涵盖的主题将帮助用户体验专业人士、学生和利益相关者更好地理解什么是用户研究。

通过这本书,你将获得一套实用的技能,范围从如何进行研究,以建立一个案例,以获得所需的预算和资源。它将为你提供一个如何组织你的研究,如何计划它,以及如何在整个项目中管理利益相关者的期望的清晰的说明。您将看到如何将用户研究融入到您的组织中,并在不同的产品开发阶段(发现、Alpha、Beta直到上线)将其结合起来,以及如何发展一个用户研究团队。

《实用用户研究》回顾了用于用户研究的方法论,着眼于如何招募参与者,如何收集和分析数据,最后关注如何解释和展示你的发现。跨文化研究、可及性和辅助数字研究也将在本书中讨论。最后一章给你10个项目概要,你将能够应用你的新技能集,并将你所学到的付诸实践。

你将学习:

  • 将用户研究整合到你的业务中
  • 将用户研究应用到产品开发周期中
  • 审查进行用户研究所需的适当程序
  • 用一种实用的方法进行用户研究

这本书是给谁的:

  • 任何想了解更多用户研究的人。
成为VIP会员查看完整内容
0
47

对于语音计算领域的开发者来说,这是一个激动人心的时刻:谷歌上每4次搜索中就有1次是支持语音的,亚马逊Alexa刚刚超过1万个技能,WhatsApp上每天完成1亿个通话。但是你从哪里开始学习如何在这个领域编码呢?

无论您是一位经验丰富的开发人员还是刚刚起步,这本书都将指导您使用Python构建基于语音的应用程序。

  • 了解如何读/写、记录、清洁、加密、回放、转码、转录、压缩、发布、饱和化、建模和可视化语音文件
  • 从零开始创建自己的语音计算机和语音助手
  • 在Docker和Kubernetes上设计前沿的微服务服务器架构
  • 在GitHub存储库中访问200多个初始脚本
  • 参与到更大的开源语音社区中
成为VIP会员查看完整内容
0
52

通过这个紧凑的实用指南,开始使用Python进行数据分析。这本书包括三个练习和一个用正确的格式从Python代码中获取数据的案例研究。使用Python学习数据分析还可以帮助您使用分析发现数据中的意义,并展示如何可视化数据。

每一节课都尽可能是独立的,允许您根据需要插入和退出示例。如果您已经在使用Python进行数据分析,那么您会发现您希望知道如何使用Python来完成许多事情。然后,您可以将这些技术直接应用到您自己的项目中。

如果您不使用Python进行数据分析,那么本书从一开始就带您了解基础知识,为您在该主题中打下坚实的基础。当你阅读完这本书的时候,你会对如何使用Python进行数据分析有更好的理解。

你将学到什么

  • 从Python代码中获取数据
  • 准备数据及其格式
  • 找出数据的意义
  • 使用iPython可视化数据

这本书是给谁的

想学习使用Python进行数据分析的同学。建议您具有Python方面的经验,但不是必需的,因为您需要具有数据分析或数据科学方面的经验。

成为VIP会员查看完整内容
0
92

使用Microsoft Excel中流行的数据挖掘技术,更好地理解机器学习方法。

软件工具和编程语言包接受数据输入并直接交付数据挖掘结果,对工作机制没有任何见解,并在输入和输出之间造成了鸿沟。这就是Excel可以提供帮助的地方。

Excel允许您以透明的方式处理数据。当您打开一个Excel文件时,数据立即可见,您可以直接使用它。在执行挖掘任务时,可以检查中间结果,从而更深入地理解如何操作数据和获得结果。这些是隐藏在软件工具和编程语言包中的模型构建过程的关键方面。

这本书教你通过Excel进行数据挖掘。您将了解当数据集不是很大时Excel在数据挖掘方面的优势。它可以为您提供数据挖掘的可视化表示,在结果中建立信心。您将手动完成每一个步骤,这不仅提供了一个主动学习体验,而且还告诉您挖掘过程是如何工作的,以及如何发现数据内部隐藏的模式。

你将学到什么

  • 使用可视化的一步一步的方法理解数据挖掘
  • 首先从理论上介绍了一种数据挖掘方法,然后是Excel的实现
  • 揭开机器学习算法背后的神秘面纱,让每个人都能接触到一个复杂的话题
  • 熟练使用Excel公式和函数
  • 获得数据挖掘和Excel的实际操作经验

这本书是给谁的

  • 任何对学习数据挖掘或机器学习感兴趣的人,特别是数据科学视觉学习者和擅长Excel的人,希望探索数据科学主题和/或扩展他们的Excel技能的人。建议对Excel有基本或初级的了解。
成为VIP会员查看完整内容
0
54

理解并实施panda的大数据分析解决方案,强调性能。本书通过探索其底层实现和数据结构,增强了您使用Python数据分析库pandas的直觉。

《Pandas 编程思想》介绍了大数据的主题,并通过观看pandas帮助解决的激动人心和有影响力的项目来展示概念。从那里,您将学习按大小和类型评估您自己的项目,以确定pandas是否适合您的需要。作者Hannah Stepanek解释了如何在pandas中有效地加载和规范化数据,并回顾了一些最常用的加载器和它们的几个最强大的选项。然后,您将了解如何有效地访问和转换数据,应该避免哪些方法,以及何时使用更高级的性能技术。您还将学习基本的数据访问、学习panda和直观的字典语法。此外,还讨论了如何选择正确的DataFrame格式、使用多层次的DataFrame以及将来如何改进panda。

在本书结束时,您将对pandas库的底层工作原理有一个牢固的理解。准备好用正确的方法在你自己的项目中做出自信的决定。

你将学到什么

  • 理解pandas的底层数据结构,以及为什么在某些情况下它会这样执行
  • 了解如何使用pandas正确地提取、转换和加载数据,重点关注性能
  • 选择正确的数据格式,使数据分析简单有效。
  • 使用其他Python库提高pandas操作的性能

这本书是给谁的

  • 具有基本Python编程技能的软件工程师热衷于在大数据分析项目中使用pandas。Python软件开发人员对大数据感兴趣。
成为VIP会员查看完整内容
0
89

从设计和原型设计到测试、部署和维护,Python在许多方面都很有用,它一直是当今最流行的编程语言之一。这本实用的书的第三版提供了对语言的快速参考——包括Python 3.5、2.7和3.6的突出部分——它庞大的标准库中常用的区域,以及一些最有用的第三方模块和包。

本书非常适合具有一些Python经验的程序员,以及来自其他编程语言的程序员,它涵盖了广泛的应用领域,包括web和网络编程、XML处理、数据库交互和高速数字计算。了解Python如何提供优雅、简单、实用和强大功能的独特组合。

这个版本包括:

  • Python语法、面向对象的Python、标准库模块和第三方Python包
  • Python对文件和文本操作、持久性和数据库、并发执行和数值计算的支持
  • 网络基础、事件驱动编程和客户端网络协议模块
  • Python扩展模块,以及用于打包和分发扩展、模块和应用程序的工具
成为VIP会员查看完整内容
0
110

本书主要内容包括:数据清洗在数据科学领域中的重要作用,文件格式、数据类型、字符编码的基本概念,组织和处理数据的电子表格与文本编辑器,各种格式数据的转换方法,解析和清洗网页上的HTML 文件的三种策略,提取和清洗PDF 文件中数据的方法,检测和清除RDBMS 中的坏数据的解决方案,以及使用书中介绍的方法清洗来自Twitter 和Stack Overflow 的数据。

本书适合任何水平的数据科学家以及对数据清理感兴趣的读者阅读。

数据清洗是数据挖掘与分析过程中不可缺少的一个环节,但因为数据类型极其复杂,传统的清洗脏数据工作单调乏味且异常辛苦。如果能利用正确的工具和方法,就可以让数据清洗工作事半功倍。

本书从文件格式、数据类型、字符编码等基本概念讲起,通过真实的示例,探讨如何提取和清洗关系型数据库、网页文件和PDF文档中的数据。最后提供了两个真实的项目,让读者将所有数据清洗技术付诸实践,完成整个数据科学过程。

如果你是一位数据科学家,或者从事数据科学工作,哪怕是位新手,只要对数据清洗有兴趣,那么本书就适合你阅读!

  • 理解数据清洗在整个数据科学过程中的作用
  • 掌握数据清洗的基础知识,包括文件清洗、数据类型、字符编码等
  • 发掘电子表格和文本编辑器中与数据组织和操作相关的重要功能
  • 学会常见数据格式的相互转换,如JSON、CSV和一些特殊用途的格式
  • 采用三种策略来解析和清洗HTML文件中的数据
  • 揭开PDF文档的秘密,提取需要的数据
  • 借助一系列解决方案来清洗存放在关系型数据库里的坏数据
  • 创建自己的干净数据集,为其打包、添加授权许可并与他人共享
  • 使用书中的工具以及Twitter和Stack Overflow数据,完成两个真实的项目
成为VIP会员查看完整内容
0
92

利用物联网(IoT)将机器学习应用于农业、电信和能源领域的案例研究。本书首先介绍如何设置软件和硬件组件,包括各种传感器,以实现Python中的案例研究。

案例研究部分首先对电信行业的物联网电话掉线进行了研究,然后对工业机器的能源审计和预测维护进行了案例研究,最后介绍了农业企业预测现金作物歉收的技术。最后一节讨论在这些领域中实现机器学习和物联网时要避免的陷阱。

阅读本书后,您将了解物联网和机器学习如何在示例领域中使用,并有实际的案例研究来使用和扩展。使用Python,您将能够使用Raspberry pi3b +和Arduino Mega 2560创建企业级应用程序。

你会学到什么

  • 使用物联网实现机器学习,并使用Python解决电信、农业和能源行业的问题
  • 在实际场景中建立和使用工业级物联网产品,如Modbus RS485协议设备
  • 为商用级物联网或物联网项目开发解决方案
  • 利用物联网从零开始进行机器学习的案例研究

这本书是给谁的

  • Raspberry Pi和Arduino爱好者以及数据科学和机器学习专业人士。
成为VIP会员查看完整内容
0
55

Python 官方教程(https://docs.python.org/3/tutorial/)的开头是这样写的:“Python 是一门既容易上手又强大的编程语言。”这句话本身并无大碍,但需要注意的是,正因为它既好学又好用,所以很多Python程序员只用到了其强大功能的一小部分。

只需要几个小时,经验丰富的程序员就能学会用 Python 写出实用的程序。然而随着这最初高产的几个小时变成数周甚至数月,在那些先入为主的编程语言的影响下,开发者们会慢慢地写出带着“口音”的 Python 代码。即便 Python 是你的初恋,也难逃此命运。因为在学校里,抑或是那些入门书上,教授者往往会有意避免只跟语言本身相关的特性。

另外,向那些已在其他语言领域里有了丰富经验的程序员介绍 Python 的时候,我还发现了一个问题:人们总是倾向于寻求自己熟悉的东西。受到其他语言的影响,你大概能猜到Python会支持正则表达式,然后就会去查阅文档。但是如果你从来没见过元组拆包(tuple unpacking),也没听过描述符(descriptor)这个概念,那么估计你也不会特地去搜索它们,然后就永远失去了使用这些Python独有的特性的机会。这也是本书试图解决的一个问题。

第一部分

第一部分只有单独的一章,讲解的是 Python 的数据模型(datamodel),以及如何为了保证行为一致性而使用特殊方法(比如__repr__),毕竟 Python 的一致性是出了名的。其实整本书几乎都是在讲解 Python 的数据模型,第 1 章算是一个概览。

第二部分

第二部分包含了各种集合类型:序列(sequence)、映射(mapping)和集合(set),另外还提及了字符串(str)和字节序列(bytes)的区分。说起来,最后这一点也是让亲者(Python 3 用户)快,仇者(Python 2 用户)痛的一个关键,因为这个区分致使 Python 2代码迁移到 Python 3 的难度陡增。第二部分的目标是帮助读者回忆起Python 内置的类库,顺带解释这些类库的一些不太直观的地方。具体的例子有 Python 3 如何在我们观察不到的地方对 dict 的键重新排序,或者是排序有区域(locale)依赖的字符串时的注意事项。为了达到本部分的目标,有些地方的讲解会比较大而全,像序列类型和映射类型的变种就是这样;有时则会写得很深入,比方说我会对dict 和 set 底层的散列表进行深层次的讨论。

第三部分

如何把函数作为一等对象(first-order object)来使用。第三部分首先会解释前面这句话是什么意思,然后话题延伸到这个概念对那些被广泛使用的设计模型的影响,最后读者会看到如何利用闭包(closure)的概念来实现函数装饰器(function decorator)。这一部分的话题还包括Python 的这些基本概念:可调用(callable)、函数属性(functionattribute)、内省(introspection)、参数注解(parameter annotation)和Python 3 里新出现的 nonlocal 声明。

第四部分

  到了这里,书的重点转移到了类的构建上面。虽然在第二部分里的例子里就有类声明(class declaration)的出现,但是第四部分会呈现更多的类。和任何面向对象语言一样,Python 还有些自己的特性,这些特性可能并不会出现在你我学习基于类的编程的语言中。这一部分的章节解释了引用(reference)的原理、“可变性”的概念、实例的生命周期、

如何构建自定义的集合类型和 ABC、多重继承该怎么理顺、什么时候应该使用操作符重载及其方法。

第五部分

Python 中有些结构和库不再满足于诸如条件判断、循环和子程序(subroutine)之类的顺序控制流程,第五部分的笔墨会集中在这些构造和库上。我们会从生成器(generator)起步,然后话题会转移到上下文管理器(context manager)和协程(coroutine),其中会涵盖新增的功能强大但又不容易理解的 yield from 语法。这一部分以并发性和面向事件的 I/O 来结尾,其中跟并发性相关的是 collections.futures这个很新的包,它借助 futures 包把线程和进程的概念给封装了起

来;而跟面向事件 I/O 相关的则是 asyncio,它的背后是基于协程和yield from 的 futures 包。

第六部分

  第六部分的开头会讲到如何动态创建带属性的类,用以处理诸如JSON 这类半结构化的数据。然后会从大家已经熟悉的特性(property)机制入手,用描述符从底层来解释 Python 对象属性的存取。同时,函数、方法和描述符的关系也会被梳理一遍。第六部分会从头至尾地实现一个字段验证器,在这个过程中我们会遇到一些微妙的问题,然后在最后一章中就自然引出像类装饰器(class decorator)和元类(metaclass)这些高级的概念。

成为VIP会员查看完整内容
1
93
小贴士
相关主题
相关VIP内容
专知会员服务
118+阅读 · 2020年7月31日
专知会员服务
47+阅读 · 2020年7月21日
专知会员服务
52+阅读 · 2020年7月12日
专知会员服务
92+阅读 · 2020年6月29日
专知会员服务
54+阅读 · 2020年6月28日
专知会员服务
110+阅读 · 2020年5月21日
专知会员服务
92+阅读 · 2020年5月14日
专知会员服务
93+阅读 · 2020年3月22日
相关资讯
福利 | 这是一个理论+实战的机器学习加油包
DBAplus社群
6+阅读 · 2018年6月28日
12本新书上市
图灵教育
14+阅读 · 2018年6月4日
这可能是学习Python最好的免费在线电子书
程序猿
34+阅读 · 2018年5月17日
【入门】数据分析六部曲
36大数据
8+阅读 · 2017年12月6日
高效使用 Python 可视化工具 Matplotlib
Python开发者
4+阅读 · 2017年7月3日
相关论文
Optimization for deep learning: theory and algorithms
Ruoyu Sun
76+阅读 · 2019年12月19日
Xiaohua Zhai,Avital Oliver,Alexander Kolesnikov,Lucas Beyer
3+阅读 · 2019年5月9日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
3+阅读 · 2019年4月25日
Learning Discriminative Model Prediction for Tracking
Goutam Bhat,Martin Danelljan,Luc Van Gool,Radu Timofte
5+阅读 · 2019年4月15日
Marc Everett Johnson
3+阅读 · 2018年12月18日
Yang Feng,Lin Ma,Wei Liu,Jiebo Luo
6+阅读 · 2018年11月27日
Pengpeng Liang,Yifan Wu,Hu Lu,Liming Wang,Chunyuan Liao,Haibin Ling
4+阅读 · 2018年5月22日
Zhen Yang,Wei Chen,Feng Wang,Bo Xu
6+阅读 · 2018年4月24日
Pengfei Zhu,Longyin Wen,Xiao Bian,Haibin Ling,Qinghua Hu
6+阅读 · 2018年4月23日
Nan Li,Tianli Liao
3+阅读 · 2018年2月13日
Top