从设计和原型设计到测试、部署和维护,Python在许多方面都很有用,它一直是当今最流行的编程语言之一。这本实用的书的第三版提供了对语言的快速参考——包括Python 3.5、2.7和3.6的突出部分——它庞大的标准库中常用的区域,以及一些最有用的第三方模块和包。

本书非常适合具有一些Python经验的程序员,以及来自其他编程语言的程序员,它涵盖了广泛的应用领域,包括web和网络编程、XML处理、数据库交互和高速数字计算。了解Python如何提供优雅、简单、实用和强大功能的独特组合。

这个版本包括:

  • Python语法、面向对象的Python、标准库模块和第三方Python包
  • Python对文件和文本操作、持久性和数据库、并发执行和数值计算的支持
  • 网络基础、事件驱动编程和客户端网络协议模块
  • Python扩展模块,以及用于打包和分发扩展、模块和应用程序的工具
成为VIP会员查看完整内容
0
110

相关内容

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
123

数据科学库、框架、模块和工具包非常适合进行数据科学研究,但它们也是深入研究这一学科的好方法,不需要真正理解数据科学。在本书中,您将了解到许多最基本的数据科学工具和算法都是通过从头实现来实现的。

如果你有数学天赋和一些编程技能,作者Joel Grus将帮助你熟悉作为数据科学核心的数学和统计,以及作为数据科学家的入门技能。如今,这些杂乱的、充斥着海量数据的数据,为一些甚至没人想过要问的问题提供了答案。这本书为你提供了挖掘这些答案的诀窍。

参加Python速成班

  • 学习线性代数、统计和概率的基础知识,并了解如何以及何时在数据科学中使用它们
  • 收集、探索、清理、分析和操作数据
  • 深入了解机器学习的基本原理
  • 实现诸如k近邻、朴素贝叶斯、线性和逻辑回归、决策树、神经网络和聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce和数据库
成为VIP会员查看完整内容
0
73

简单易懂,读起来很有趣,介绍Python对于初学者和语言新手都是理想的。作者Bill Lubanovic带您从基础知识到更复杂和更多样的主题,混合教程和烹饪书风格的代码配方来解释Python 3中的概念。章节结尾的练习可以帮助你练习所学的内容。

您将获得该语言的坚实基础,包括测试、调试、代码重用和其他开发技巧的最佳实践。本书还向您展示了如何使用各种Python工具和开放源码包将Python用于商业、科学和艺术领域的应用程序。

  • 学习简单的数据类型,以及基本的数学和文本操作
  • 在Python的内置数据结构中使用数据协商技术
  • 探索Python代码结构,包括函数的使用
  • 用Python编写大型程序,包括模块和包
  • 深入研究对象、类和其他面向对象的特性
  • 检查从平面文件到关系数据库和NoSQL的存储
  • 使用Python构建web客户机、服务器、api和服务
  • 管理系统任务,如程序、进程和线程
  • 了解并发性和网络编程的基础知识

成为VIP会员查看完整内容
0
113

使用Python进行自然语言处理(NLP),学习如何设置健壮环境来执行文本分析。这第二版经历了一个重大的修改,并介绍了几个重要的变化和基于NLP的最新趋势的新主题。

您将了解如何在NLP中使用最新的、最先进的框架,以及机器学习和深度学习模型,用于Python支持的监督情感分析,以解决实际的案例研究。首先回顾Python中关于字符串和文本数据的NLP基础知识,然后讨论文本数据的工程表示方法,包括传统的统计模型和新的基于深度学习的嵌入模型。本文还讨论了解析和处理文本的改进技术和新方法。

文本摘要和主题模型已经全面修订,因此本书展示了如何在NIPS会议论文的兴趣数据集上下文中构建、调整和解释主题模型。此外,这本书涵盖了文本相似性技术与现实世界的电影推荐人的例子,以及情绪分析使用监督和非监督的技术。还有一章专门讨论语义分析,您将了解如何从头构建自己的命名实体识别(NER)系统。虽然该书的整体结构保持不变,但整个代码库、模块和章节都已更新到最新的Python 3。x版本。

你将学习

  • 理解NLP和文本的语法、语义和结构
  • 发现文本清理和功能工程
  • 回顾文本分类和文本聚类
  • 评估文本摘要和主题模型
  • 学习NLP的深度学习

这本书是给谁的

  • IT专业人员、数据分析师、开发人员、语言学专家、数据科学家和工程师,以及任何对语言学、分析和从文本数据中产生见解有浓厚兴趣的人。
成为VIP会员查看完整内容
0
76

如果编程是一种魔法,那么web抓取无疑是一种魔术。通过编写一个简单的自动化程序,您可以查询web服务器、请求数据并解析它以提取所需的信息。这本实用书籍的扩展版不仅介绍了web抓取,而且还提供了从现代web中抓取几乎所有类型数据的全面指南。

第1部分侧重于web抓取机制:使用Python从web服务器请求信息,执行服务器响应的基本处理,并以自动方式与站点交互。第2部分探索了各种更具体的工具和应用程序,以适应您可能遇到的任何web抓取场景。

  • 解析复杂的HTML页面
  • 使用Scrapy框架开发爬行器
  • 学习存储您搜集的数据的方法
  • 从文档中读取和提取数据
  • 清理和规范化格式错误的数据
  • 阅读和编写自然语言
  • 浏览表单和登录
  • 抓取JavaScript和爬过api
  • 使用和编写图像到文本的软件
  • 避免抓取陷阱和机器人拦截器
  • 使用抓取工具来测试你的网站
成为VIP会员查看完整内容
0
69

Python程序员将使用这些有用的单行程序来提高他们的计算机科学技能。

Python单行程序将教会您如何阅读和编写“单行程序”:将有用功能的简明语句封装到一行代码中。您将学习如何系统地解包和理解任何一行Python代码,并像专家一样编写雄辩、强大的压缩Python。

本书共分五章,内容包括技巧和技巧、正则表达式、机器学习、核心数据科学主题和有用的算法。对一行程序的详细解释将介绍关键的计算机科学概念,并提高您的编码和分析技能。您将了解高级Python特性,如列表理解、切片、lambda函数、正则表达式、映射和缩减函数以及切片分配。您还将学习如何:

•利用数据结构来解决现实世界的问题,比如使用布尔索引来查找污染水平高于平均水平的城市

•使用NumPy基础,如数组、形状、轴、类型、广播、高级索引、切片、排序、搜索、聚合和统计

•计算多维数据数组的基本统计量和无监督学习的K-Means算法

•使用分组和命名组、负查找头、转义字符、空白、字符集(和负字符集)和贪婪/非贪婪操作符创建更高级的正则表达式

•了解广泛的计算机科学主题,包括字谜、回文、超集、排列、阶乘、质数、斐波纳契数、混淆、搜索和算法排序

在本书的最后,您将了解如何以最精炼的方式编写Python,并仅用一行代码就创建简洁、漂亮的“Python艺术”片段。

成为VIP会员查看完整内容
0
170

《快速Python书籍,第三版》是由Python权威Naomi Ceder编写的关于Python语言的全面指南。作为一名熟练的教师,她完美地平衡了语言的细节和你处理任何任务所需的洞察力和建议。大量相关的例子和边做边学的练习可以帮助你第一次掌握每个重要的概念。无论您是抓取网站还是玩弄嵌套元组,您都会欣赏这本书的清晰、重点和对细节的关注。

这是Manning受欢迎的《快速Python》一书的第三版,对优雅的Python编程语言及其著名的易于阅读的语法进行了清晰、清晰的介绍。这是为初学Python的程序员编写的,最新的版本包含了新的练习。它简明扼要地介绍了其他语言共有的特性,同时详细介绍了Python的全面标准函数库和独特的特性。

成为VIP会员查看完整内容
0
50

改进您的编程技术和方法,成为一个更有生产力和创造性的Python程序员。本书探索了一些概念和特性,这些概念和特性不仅将改进您的代码,而且还将帮助您理解Python社区,并对Python哲学有深入的了解和详细的介绍。

专业的Python 3,第三版给你的工具写干净,创新的代码。它首先回顾了一些核心的Python原则,这些原则将在本书后面的各种概念和示例中进行说明。本书的前半部分探讨了函数、类、协议和字符串的各个方面,描述了一些技术,这些技术可能不是常见的知识,但它们共同构成了坚实的基础。后面的章节涉及文档、测试和应用程序分发。在此过程中,您将开发一个复杂的Python框架,该框架将整合在本书中所学到的思想。

这个版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup进行web抓取、使用请求调用没有字符串的web页面、用于分发和安装的新工具等等。在本书的最后,您将准备好部署不常见的特性,这些特性可以将您的Python技能提升到下一个级别。

你将学习

  • 用各种类型的Python函数实现程序
  • 使用类和面向对象编程
  • 使用标准库和第三方库中的字符串
  • 使用Python获取web站点数据
  • 通过编写测试套件来自动化单元测试
  • 回顾成像、随机数生成和NumPy科学扩展
  • 理解Python文档的精髓,以帮助您决定分发代码的最佳方式

这本书是给谁看的 熟悉Python的中级程序员,希望提升到高级水平。您应该至少编写了一个简单的Python应用程序,并且熟悉基本的面向对象方法、使用交互式解释器和编写控制结构。

成为VIP会员查看完整内容
0
123

在Python中获得操作、处理、清理和处理数据集的完整说明。本实用指南的第二版针对Python 3.6进行了更新,其中包含了大量的实际案例研究,向您展示了如何有效地解决广泛的数据分析问题。在这个过程中,您将学习最新版本的panda、NumPy、IPython和Jupyter。

本书由Python panda项目的创建者Wes McKinney编写,是对Python中的数据科学工具的实用的、现代的介绍。对于刚接触Python的分析人员和刚接触数据科学和科学计算的Python程序员来说,它是理想的。数据文件和相关材料可以在GitHub上找到。

  • 使用IPython外壳和Jupyter笔记本进行探索性计算
  • 学习NumPy (Numerical Python)中的基本和高级特性
  • 开始使用pandas库的数据分析工具
  • 使用灵活的工具来加载、清理、转换、合并和重塑数据
  • 使用matplotlib创建信息可视化
  • 应用panda groupby工具对数据集进行切片、切割和汇总
  • 分析和处理有规律和不规则的时间序列数据
  • 学习如何解决现实世界的数据分析问题与彻底的,详细的例子
成为VIP会员查看完整内容
0
87

创建健壮的软件需要使用高效的算法,但是程序员在问题出现之前很少考虑这些算法。这个更新版的算法简而言之描述了大量现有的算法,用于解决各种各样的问题,并帮助您选择和实现适合您需要的正确算法—只需足够的数学知识就可以让您理解和分析算法的性能。

本书的重点是应用,而不是理论,它提供了几种编程语言的高效代码解决方案,您可以轻松地适应特定的项目。每个主要算法都以设计模式的形式呈现,其中包含帮助您理解为什么以及何时使用该算法的信息。

有了这本书,你将: 解决特定的编码问题或改进现有解决方案的性能 快速定位与您想要解决的问题相关的算法,并确定为什么使用特定的算法是正确的 通过实现技巧获得C、c++、Java和Ruby中的算法解决方案 了解一个算法的预期性能,以及它需要在最佳状态下执行的条件 发现相似的设计决策对不同算法的影响 学习先进的数据结构,提高算法的效率

成为VIP会员查看完整内容
0
90
小贴士
相关主题
相关VIP内容
专知会员服务
123+阅读 · 2020年6月10日
专知会员服务
73+阅读 · 2020年5月19日
专知会员服务
113+阅读 · 2020年5月17日
专知会员服务
69+阅读 · 2020年5月10日
【经典书】Python数据数据分析第二版,541页pdf
专知会员服务
87+阅读 · 2020年3月12日
相关资讯
吐血整理!140种Python标准库、第三方库和外部工具都有了
炼数成金订阅号
8+阅读 · 2019年7月30日
Python用法速查网站
Python程序员
12+阅读 · 2018年12月16日
吃鸡手游竟然是Python写的?
机器学习算法与Python学习
3+阅读 · 2018年9月11日
Python 杠上 Java、C/C++,赢面有几成?
CSDN
5+阅读 · 2018年4月12日
荐书丨Python数据分析从入门到精通
程序人生
7+阅读 · 2018年3月31日
Python为啥这么牛?
Python程序员
3+阅读 · 2018年3月30日
这几本Python新书特别赞
图灵教育
5+阅读 · 2018年3月1日
荐书丨OpenCV算法精解:基于Python与C++
程序人生
7+阅读 · 2017年11月18日
相关论文
A survey on deep hashing for image retrieval
Xiaopeng Zhang
9+阅读 · 2020年6月10日
Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark
Ke Li,Gang Wan,Gong Cheng,Liqiu Meng,Junwei Han
19+阅读 · 2019年9月22日
Dinghan Shen,Martin Renqiang Min,Yitong Li,Lawrence Carin
5+阅读 · 2018年8月30日
FuzzerGym: A Competitive Framework for Fuzzing and Learning
William Drozd,Michael D. Wagner
3+阅读 · 2018年7月19日
Sounak Dey,Anjan Dutta,Suman K. Ghosh,Ernest Valveny,Josep Lladós,Umapada Pal
5+阅读 · 2018年4月28日
Holger R. Roth,Chen Shen,Hirohisa Oda,Masahiro Oda,Yuichiro Hayashi,Kazunari Misawa,Kensaku Mori
5+阅读 · 2018年3月23日
EL-Hachemi Guerrout,Samy Ait-Aoudia,Dominique Michelucci,Ramdane Mahiou
6+阅读 · 2018年3月13日
Yan Zhang,Jonathon Hare,Adam Prügel-Bennett
10+阅读 · 2018年2月15日
Chengjiang Long,Roddy Collins,Eran Swears,Anthony Hoogs
5+阅读 · 2018年1月27日
Fahim Irfan Alam,Jun Zhou,Alan Wee-Chung Liew,Xiuping Jia,Jocelyn Chanussot,Yongsheng Gao
10+阅读 · 2017年12月27日
Top