Automatic summarization of natural language is a current topic in computer science research and industry, studied for decades because of its usefulness across multiple domains. For example, summarization is necessary to create reviews such as this one. Research and applications have achieved some success in extractive summarization (where key sentences are curated), however, abstractive summarization (synthesis and re-stating) is a hard problem and generally unsolved in computer science. This literature review contrasts historical progress up through current state of the art, comparing dimensions such as: extractive vs. abstractive, supervised vs. unsupervised, NLP (Natural Language Processing) vs Knowledge-based, deep learning vs algorithms, structured vs. unstructured sources, and measurement metrics such as Rouge and BLEU. Multiple dimensions are contrasted since current research uses combinations of approaches as seen in the review matrix. Throughout this summary, synthesis and critique is provided. This review concludes with insights for improved abstractive summarization measurement, with surprising implications for detecting understanding and comprehension in general.

3
下载
关闭预览

相关内容

就是说在不改变文档原意的情况下,利用计算机程序自动地总结出文档的主要内容。自动摘要的应用场景非常多,例如新闻标题生成、科技文献摘要生成、搜索结果片段(snippets)生成、商品评论摘要等。

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

0
12
下载
预览

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

0
82
下载
预览

Language is central to human intelligence. We review recent breakthroughs in machine language processing and consider what remains to be achieved. Recent approaches rely on domain general principles of learning and representation captured in artificial neural networks. Most current models, however, focus too closely on language itself. In humans, language is part of a larger system for acquiring, representing, and communicating about objects and situations in the physical and social world, and future machine language models should emulate such a system. We describe existing machine models linking language to concrete situations, and point toward extensions to address more abstract cases. Human language processing exploits complementary learning systems, including a deep neural network-like learning system that learns gradually as machine systems do, as well as a fast-learning system that supports learning new information quickly. Adding such a system to machine language models will be an important further step toward truly human-like language understanding.

0
4
下载
预览

Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.

0
62
下载
预览

Bidirectional Encoder Representations from Transformers (BERT) represents the latest incarnation of pretrained language models which have recently advanced a wide range of natural language processing tasks. In this paper, we showcase how BERT can be usefully applied in text summarization and propose a general framework for both extractive and abstractive models. We introduce a novel document-level encoder based on BERT which is able to express the semantics of a document and obtain representations for its sentences. Our extractive model is built on top of this encoder by stacking several inter-sentence Transformer layers. For abstractive summarization, we propose a new fine-tuning schedule which adopts different optimizers for the encoder and the decoder as a means of alleviating the mismatch between the two (the former is pretrained while the latter is not). We also demonstrate that a two-staged fine-tuning approach can further boost the quality of the generated summaries. Experiments on three datasets show that our model achieves state-of-the-art results across the board in both extractive and abstractive settings. Our code is available at https://github.com/nlpyang/PreSumm

0
4
下载
预览

In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.

0
3
下载
预览

Consistency is a long standing issue faced by dialogue models. In this paper, we frame the consistency of dialogue agents as natural language inference (NLI) and create a new natural language inference dataset called Dialogue NLI. We propose a method which demonstrates that a model trained on Dialogue NLI can be used to improve the consistency of a dialogue model, and evaluate the method with human evaluation and with automatic metrics on a suite of evaluation sets designed to measure a dialogue model's consistency.

0
5
下载
预览

We present deep communicating agents in an encoder-decoder architecture to address the challenges of representing a long document for abstractive summarization. With deep communicating agents, the task of encoding a long text is divided across multiple collaborating agents, each in charge of a subsection of the input text. These encoders are connected to a single decoder, trained end-to-end using reinforcement learning to generate a focused and coherent summary. Empirical results demonstrate that multiple communicating encoders lead to a higher quality summary compared to several strong baselines, including those based on a single encoder or multiple non-communicating encoders.

0
5
下载
预览

Scientific publications have evolved several features for mitigating vocabulary mismatch when indexing, retrieving, and computing similarity between articles. These mitigation strategies range from simply focusing on high-value article sections, such as titles and abstracts, to assigning keywords, often from controlled vocabularies, either manually or through automatic annotation. Various document representation schemes possess different cost-benefit tradeoffs. In this paper, we propose to model different representations of the same article as translations of each other, all generated from a common latent representation in a multilingual topic model. We start with a methodological overview on latent variable models for parallel document representations that could be used across many information science tasks. We then show how solving the inference problem of mapping diverse representations into a shared topic space allows us to evaluate representations based on how topically similar they are to the original article. In addition, our proposed approach provides means to discover where different concept vocabularies require improvement.

0
3
下载
预览

While advances in computing resources have made processing enormous amounts of data possible, human ability to identify patterns in such data has not scaled accordingly. Thus, efficient computational methods for condensing and simplifying data are becoming vital for extracting actionable insights. In particular, while data summarization techniques have been studied extensively, only recently has summarizing interconnected data, or graphs, become popular. This survey is a structured, comprehensive overview of the state-of-the-art methods for summarizing graph data. We first broach the motivation behind and the challenges of graph summarization. We then categorize summarization approaches by the type of graphs taken as input and further organize each category by core methodology. Finally, we discuss applications of summarization on real-world graphs and conclude by describing some open problems in the field.

0
3
下载
预览
小贴士
相关论文
Jingqing Zhang,Yao Zhao,Mohammad Saleh,Peter J. Liu
12+阅读 · 2020年6月2日
Xipeng Qiu,Tianxiang Sun,Yige Xu,Yunfan Shao,Ning Dai,Xuanjing Huang
82+阅读 · 2020年3月18日
Extending Machine Language Models toward Human-Level Language Understanding
James L. McClelland,Felix Hill,Maja Rudolph,Jason Baldridge,Hinrich Schütze
4+阅读 · 2019年12月12日
A Survey of the Usages of Deep Learning in Natural Language Processing
Daniel W. Otter,Julian R. Medina,Jugal K. Kalita
62+阅读 · 2019年9月11日
Yang Liu,Mirella Lapata
4+阅读 · 2019年8月22日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
3+阅读 · 2019年4月25日
Sean Welleck,Jason Weston,Arthur Szlam,Kyunghyun Cho
5+阅读 · 2018年11月1日
Asli Celikyilmaz,Antoine Bosselut,Xiaodong He,Yejin Choi
5+阅读 · 2018年3月27日
Kriste Krstovski,Michael J. Kurtz,David A. Smith,Alberto Accomazzi
3+阅读 · 2017年12月18日
Yike Liu,Abhilash Dighe,Tara Safavi,Danai Koutra
3+阅读 · 2017年4月12日
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
15+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
30+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
22+阅读 · 2017年11月16日
NLP中自动生产文摘(auto text summarization)
数据挖掘入门与实战
4+阅读 · 2017年10月10日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top