题目: Representation Learning on Graphs: Methods and Applications

摘要:

图机器学习是一项重要且普遍存在的任务,其应用范围从药物设计到社交网络中的友情推荐。这个领域的主要挑战是找到一种表示或编码图形结构的方法,以便机器学习模型能够轻松地利用它。传统上,机器学习方法依赖于用户定义的启发法来提取对图的结构信息进行编码的特征(例如,度统计或内核函数)。然而,近年来,使用基于深度学习和非线性降维的技术,自动学习将图结构编码为低维嵌入的方法激增。在这里,我们提供了一个概念上的回顾,在这一领域的关键进展,图表示学习,包括基于矩阵分解的方法,随机漫步的算法和图神经网络。我们回顾了嵌入单个节点的方法以及嵌入整个(子)图的方法。在此过程中,我们开发了一个统一的框架来描述这些最近的方法,并强调了一些重要的应用程序和未来工作的方向。

作者简介:

William L. Hamilton是麦吉尔大学计算机科学的助理教授,也是加拿大魁北克Mila AI研究所的CIFAR AI主席。William L. Hamilton开发的机器学习模型可以对这个复杂的、相互联系的世界进行推理。研究兴趣集中在机器学习、网络科学和自然语言处理的交叉领域,目前的重点是快速发展的图表示学习和图神经网络。

Rex Ying是斯坦福大学计算机科学二年级的博士生,研究主要集中在开发应用于图形结构数据的机器学习算法。曾致力于开发可扩展到网络规模数据集的广义图卷积网络,应用于推荐系统、异常检测和生物学。

成为VIP会员查看完整内容
0
94

相关内容

社会网络(英语:Social network),是由许多节点构成的一种社会结构,节点通常是指个人或组织,社会网络代表各种社会关系,经由这些社会关系,把从偶然相识的泛泛之交到紧密结合的家庭关系的各种人们或组织串连起来。社会网络由一个或多个特定类型的相互依存,如价值观、理想、观念、金融交流、友谊、血缘关系、不喜欢、冲突或贸易。由此产生的图形结构往往是非常复杂的。

【导读】知识图谱一直是学术界和工业界关注的焦点。之前专知报道了AAAI2020相关接受论文。最近Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu等学者发表了关于知识图谱的最新综述论文《A Survey on Knowledge Graphs: Representation, Acquisition and Applications》,25页pdf涵盖107篇参考文献,对知识图谱进行了全面的综述,涵盖了知识图谱表示学习、知识获取与补全、时序知识图谱、知识感知应用等方面的研究课题,并总结了最近的突破和未来的研究方向。我们提出对这些主题进行全视角分类和新的分类法。是关于知识图谱最近非常重要的参考文献。

摘要

人类知识提供了对世界的认知理解。表征实体间结构关系的知识图谱已经成为认知和人类智能研究的一个日益流行的方向。在本次综述论文中,我们对知识图谱进行了全面的综述,涵盖了知识图谱表示学习、知识获取与补全、时序知识图谱、知识感知应用等方面的研究课题,并总结了最近的突破和未来的研究方向。我们提出对这些主题进行全视角分类和新的分类法。知识图谱嵌入从表示空间、得分函数、编码模型和辅助信息四个方面进行组织。对知识获取,特别是知识图谱的补全、嵌入方法、路径推理和逻辑规则推理进行了综述。我们进一步探讨了几个新兴的主题,包括元关系学习、常识推理和时序知识图谱。为了方便未来对知识图的研究,我们还提供了不同任务的数据集和开源库的集合。最后,我们对几个有前景的研究方向进行了深入的展望。

1. 引言

融合人类知识是人工智能的研究方向之一。知识表示与推理是受人类解决问题方式的启发,为智能系统表示知识以获得解决复杂任务的能力。近年来,知识图谱作为结构化人类知识的一种形式,受到了学术界和产业界的广泛关注。知识图谱是事实的结构化表示,由实体、关系和语义描述组成。实体可以是现实世界的对象和抽象概念,关系表示实体之间的关联,实体及其关系的语义描述包含定义良好的类型和属性。属性图或性质图被广泛使用,其中节点和关系具有属性或性质。

知识图谱与知识库是同义的,只是略有不同。当考虑知识图谱的图结构时,知识图谱可以看作是一个图。当它涉及到形式语义时,它可以作为解释和推断事实的知识库。知识库实例和知识图谱如图1所示。知识可以用事实的三元组形式来表达(头实体,关系,尾实体)或者(主语,谓语,宾语)(head, relation,tail)或 (subject, predicate,object)

例如(Albert Einstein; WinnerOf; Nobel Prize). 它也可以表示为一个有向图,其中节点是实体,边是关系。为了简化和顺应研究领域的发展趋势,本文将知识图谱和知识库这两个术语互换使用。

图1 知识库和知识图谱示例

近年来,基于知识图谱的研究主要集中在知识表示学习(KRL)和知识图谱嵌入(KGE)两个方面。具体的知识获取任务包括知识图谱补全(KGC)、三元组分类、实体识别和关系提取。知识感知模型得益于异构信息、丰富的知识表示本体和语义以及多语言知识的集成。因此,许多现实世界的应用,如推荐系统和问题回答已经具备常识性的理解和推理能力。一些现实世界的产品,例如微软的Satori和谷歌的Knowledge Graph,已经显示出提供更高效服务的强大能力。

为了对现有的文献进行全面的综述,本文重点研究了知识表示,它为知识获取和知识感知应用提供了更加上下文化、智能化和语义化的知识表示方法。我们的主要贡献总结如下:

  • 全面性综述。我们对知识图谱的起源和现代知识图谱的关系学习技术进行了全面的综述。介绍和比较了知识图谱表示、学习和推理的主要神经网络结构。此外,我们还提供了不同领域中许多应用的完整概述。

  • 全视图分类和新的分类法。对知识图谱的研究进行了全面的分类,并提出了精细的分类方法。具体来说,在高层次上,我们从KRL、知识获取和知识感知应用三个方面对知识图谱进行了回顾。对于KRL方法,我们进一步将细粒度分类法分为四个视图,包括表示空间、评分函数、编码模型和辅助信息。在知识获取方面,将知识获取分为基于嵌入的排序、关系路径推理、逻辑规则推理和元关系学习; 实体关系获取任务分为实体识别、类型识别、消歧和对齐; 并根据神经范式对关系抽取进行了讨论。

  • 对新进展的广泛综述。知识图谱经历了快速的发展。本论文提供了广泛的新兴主题,包括基于transformer的知识编码、基于图神经网络(GNN)的知识传播、基于路径推理的强化学习和元关系学习。

  • 总结并展望未来的发展方向。这项综述对每个类别进行了总结,并强调了有前途的未来研究方向。

该综述的其余部分组织如下: 首先,知识图谱的概述,包括历史、符号、定义和分类,在第2节中给出; 然后,我们在第三节从四个范围讨论KRL; 接下来,我们将回顾第4节和第5节中知识获取和时间知识图谱的任务;下游应用介绍在第6节; 最后,讨论了未来的研究方向,并得出结论。其他信息,包括KRL模型训练和一组知识图谱数据集以及开源实现,可以在附录中找到。

2 概述

2.1 知识库简史

知识表示在逻辑和人工智能领域经历了漫长的发展历史。图形化知识表示的思想最早可以追溯到1956年Richens[127]提出的语义网概念,而符号逻辑知识可以追溯到1959年的一般问题求解者[109]。知识库首先用于基于知识的推理和问题解决系统。MYCIN[138]是最著名的基于规则的医学诊断专家系统之一,知识库约有600条规则。后来,人类知识表示的社区看到了基于框架的语言、基于规则的表示和混合表示的发展。大约在这个时期的末期,Cyc项目开始了,目的是收集人类的知识。资源描述框架(RDF)和Web本体语言(OWL)相继发布,成为语义Web的重要标准。然后,许多开放知识库或本体被发布,如WordNet、DBpedia、YAGO和Freebase。Stokman和Vries[140]在1988年的图表中提出了结构知识的现代概念。然而,自2012年谷歌搜索引擎首次提出知识图谱概念以来,知识图谱得到了极大的普及,当时提出了知识库[33]的知识融合框架来构建大规模的知识图谱。附录A说明了知识库历史的简要路线图。

图2: 知识库简史

2.2 定义和符号

大多数现有工作都是通过描述一般的语义表示或基本特征来给出定义。然而,还没有这样被广泛接受的正式定义。Paulheim[117]定义了知识图谱的四个标准。Ehrlinger和Woß[35]分析了现有的一些定义并提出定义1强调知识图谱的推理引擎。Wang等[158]在定义2中提出了多关系图的定义。根据之前的文献,我们将知识图谱定义为G={E,R,F},其中E、R和F分别是实体、关系和事实的集合。一个事实记作一个三元组A triple (h,r,t)∈F。

定义1 (Ehrlinger和Woß[35])。知识图谱获取信息并将其集成到本体中,应用推理引擎获得新知识。

定义2 (Wang et al.[158])。知识图谱是由实体和关系构成的多关系图,实体和关系分别被视为节点和不同类型的边。

表一 列出了具体的符号表示及其描述。附录B解释了几种数学运算的细节。

2.3 知识图研究的分类

本综述对知识图谱的研究,即KRL、知识获取、下游知识感知应用等方面进行了全面的文献综述,整合了许多最新的先进深度学习技术。研究的总体分类如图2所示。

图2: 知识图谱研究的分类

知识表示学习(Knowledge Representation Learning,KRL)是知识图谱的一个重要研究课题,它为许多知识获取任务和后续应用奠定了基础。我们将KRL分为表示空间、评分函数、编码模型和辅助信息四个方面,为开发KRL模型提供了清晰的工作流程。具体的内容包括:

  • 关系和实体所表示的表示空间;
  • 度量事实三元组似然性的评分函数
  • 用于表示和学习关系交互的编码模型;
  • 嵌入方法所集成的辅助信息。

表示学习包括点向空间、流形、复向量空间、高斯分布和离散空间。评分指标一般分为基于距离的评分函数和基于相似度匹配的评分函数。目前的研究集中在编码模型,包括线性/双线性模型,因式分解和神经网络。辅助信息包括文本信息、视觉信息和类型信息。

知识获取任务分为三类:关系提取和实体发现。第一个用于扩展现有的知识图谱,而其他两个用于从文本中发现新知识(即关系和实体)。KGC分为以下几类: 基于嵌入的排序、关系路径推理、基于规则的推理和元关系学习。实体发现包括识别、消歧、类型化和对齐。关系提取模型利用了注意力机制、图卷积网络、对抗性训练、强化学习、深度残差学习和迁移学习。

时序知识图谱包含了表示学习的时态信息。本研究将时间嵌入、实体动态、时序关系依赖、时序逻辑推理四个研究领域进行了分类。

知识感知应用包括自然语言理解(NLU)、问题回答、推荐系统和各种真实世界的任务,这些应用程序注入知识以改进表示学习。

2.4 相关综述论文

以往关于知识图谱的综述论文主要集中在统计相关学习[112]、知识图谱精细化[117]、中文知识图谱构建[166]、KGE[158]或KRL[87]。后两项综述与我们的工作关系更大。Lin等[87]以线性的方式提出KRL,着重于定量分析。Wang等人[158]根据评分函数对KRL进行分类,并特别关注KRL中使用的信息类型。它仅从评分度量的角度提供了当前研究的一般视角。我们的综述深入到KRL,并提供了一个完整的视图,它来自四个方面,包括表示空间、评分函数、编码模型和辅助信息。此外,本文还对知识获取和知识感知应用进行了全面的综述,讨论了基于知识图谱的推理和小样本学习等几个新兴的主题。

3 知识表示学习

KRL在文献中也被称为KGE、多关系学习和统计关系学习。本节介绍在分布式表示学习丰富的语义信息的实体和关系形成4个范围的最新进展,包括表示空间(表示实体和关系,3.1节), 得分函数(度量事实的合理性,3.2节),编码模型(模型的语义交互事实,3.3节),和辅助信息(利用外部信息,3.4节)。我们还在第3.5节中提供了一个摘要。KRL模型的训练策略在附录D中进行了回顾。

3.1 表示空间

表示学习的关键是学习低维分布式嵌入的实体和关系。现有文献主要使用实值点向空间(图2(a)),包括向量空间、矩阵空间和张量空间,其他类型的空间如复向量空间(图2(b))、高斯空间(图2(c))、流形空间(图2(d))也被利用。

图3: 不同空间的知识表示示意图

3.2 评分函数

评分函数用于度量事实的可信度,在基于能量的学习框架中也称为能量函数。能量学习的目的是学习能量函数。基于能量的学习目标学习能量函数Eθ(x)参数化θ采取x作为输入,以确保正样本分数高于负样本。本文采用评分函数的形式进行统一。评分函数有两种典型类型,即基于距离的(图3(a))和基于相似性的(图3(b))函数,用于度量事实的合理性。基于距离的评分函数通过计算实体之间的距离来衡量事实的合理度,其中使用较多的是关系为h+r≈t的翻译函数。基于语义相似度的评分方法是通过语义匹配来衡量事实的合理性,通常采用乘法公式,即h⊤Mr≈t⊤,转换头尾部附近的实体表示空间。

图4: 以TransE[10]和DistMult[185]为例的基于距离和基于相似匹配的评分函数示意图。

3.3 编码模型

本节介绍通过特定的模型体系结构(包括线性/双线性模型、因子分解模型和神经网络)对实体和关系的交互进行编码的模型。线性模型通过将头部实体投射到接近尾部实体的表示空间中,将关系表示为线性/双线性映射。因子分解的目的是将关系数据分解为低秩矩阵进行表示学习。神经网络用非线性神经激活和更复杂的网络结构来编码关系数据。几个神经模型如图5所示。

图5: 神经编码模型示意图。(a) MLP[33]和(b) CNN[110]将三元组数据输入到稠密层和卷积运算中学习语义表示,(c) GCN[132]作为知识图谱的编码器,产生实体和关系嵌入。(d) RSN[50]对实体关系序列进行编码,有区别地跳跃关系。

3.4 嵌入辅助信息

为了促进更有效的知识表示,多模态嵌入将诸如文本描述、类型约束、关系路径和视觉信息等外部信息与知识图谱本身结合起来。

3.5 总结

知识表示学习是知识图谱研究领域的一个重要课题。本节回顾了KRL的四方面,其中最近的几种方法总结在表II中,更多的方法在附录c中。总的来说,开发一个新的KRL模型是为了回答以下四个问题:1)选择哪个表示空间; 2)如何测量特定空间中三元组的合理度; 3)采用何种编码模型对关系交互进行建模; 4)是否利用辅助信息。

最常用的表示空间是基于欧几里德点的空间,它通过在向量空间中嵌入实体,并通过向量、矩阵或张量对相互作用进行建模。研究了复向量空间、高斯分布、流形空间和群等表示空间。流形空间相对于点向欧几里德空间的优点是松弛点向嵌入。高斯嵌入能够表达实体和关系的不确定性,以及多重关系语义。在复杂向量空间中嵌入可以有效地建模不同的关系连接模式,特别是对称/反对称模式。表示空间在实体语义信息的编码和关系属性的获取中起着重要的作用。在建立表示学习模型时,应仔细选择和设计合适的表示空间,以匹配编码方法的性质,平衡表达性和计算复杂度。基于距离度量的评分函数采用了翻译原则,而语义匹配评分函数采用了组合运算符。编码模型,尤其是神经网络,在实体和关系的交互建模中起着至关重要的作用。双线性模型也引起了广泛的关注,一些张量因子分解也可以看作是这一类。其他方法包括文本描述、关系/实体类型和实体图像的辅助信息。

图6 知识图谱表示学习模型全面集合

4 知识获取

知识获取的目的是从非结构化文本中构造知识图谱,补全已有的知识图,发现和识别实体和关系。良好的构造和大规模的知识图谱可以用于许多下游应用,并赋予知识感知模型常识推理的能力,从而为人工智能铺平道路。知识获取的主要任务包括关系提取、KGC和其他面向实体的获取任务,如实体识别和实体对齐。大多数方法分别制定KGC和关系提取。然而,这两个任务也可以集成到一个统一的框架中。Han等人[57]提出了一种知识图谱与文本数据融合的联合学习框架,实现了知识图谱与文本的数据融合,解决了文本的KGC和关系提取问题。与知识获取相关的任务还有三元组分类、关系分类等。在这一部分中,我们将对知识获取技术的三个方面进行全面的回顾,即知识图谱补全、实体发现技术和关系提取技术。

4.1 知识图谱补全

基于知识图谱不完备性的特点,提出了一种新的知识图谱三元组生成方法。典型的子任务包括链路预测、实体预测和关系预测。这里给出了一个面向任务的定义。给定一个不完全知识图谱 G = ( E , R , F ) , KGC 的目的推断缺失的三元组 T = { ( h , r , t ) | ( h , r , t ) ∉ F } 。

对KGC的初步研究主要集中在学习低维嵌入进行三元组预测。在本次综述中,我们将这些方法称为基于嵌入的方法。然而,它们中的大多数都没有捕捉到多步关系。因此,最近的工作转向探索多步骤的关系路径和合并逻辑规则,分别称为关系路径推理和基于规则的推理。三元组分类是KGC的一个相关任务,它评估了一个事实三元组分类的正确性,本节还将对此进行讨论。

图7: 基于嵌入的排序和关系路径推理示意图

4.2 实体的发现

本节将基于实体的知识获取分为几个细分的任务,即实体识别、实体消歧、实体类型和实体对齐。我们将它们称为实体发现,因为它们都在不同的设置下探索实体相关的知识。

图8: 实体发现任务的示意图

4.3 关系提取

关系抽取是从纯文本中抽取未知关系事实并将其加入到知识图谱中,是自动构建大规模知识图谱的关键。由于缺乏标记的关系数据,远距离监督25使用启发式匹配来创建训练数据,假设包含相同实体提及的句子在关系数据库的监督下可以表达相同的关系。Mintz等人[103]利用文本特征(包括词汇和句法特征、命名实体标记和连接特征)对关系分类进行远程监控。传统的方法高度依赖于特征工程[103],最近的一种方法探索了特征之间的内在相关性[123]。深度神经网络正在改变知识图谱和文本的表示学习。本节回顾了神经关系提取(NRE)方法的最新进展,概述如图9所示。

图9: 神经关系提取概述

4.4 总结

这一部分回顾了不完全知识图谱的知识补全和纯文本的知识获取。

知识图谱补全完成了现有实体之间缺失的链接,或者推断出给定实体和关系查询的实体。基于嵌入的KGC方法通常依赖于三元组表示学习来捕获语义,并对完成的候选排序。基于嵌入的推理仍然停留在个体关系层面,由于忽略了知识图谱的符号性,缺乏可解释性,使得复杂推理能力较差。符号学与嵌入相结合的混合方法结合了基于规则的推理,克服了知识图谱的稀疏性,提高了嵌入的质量,促使有效的规则注入,并引入了可解释的规则。从知识图谱的图形性质出发,研究了路径搜索和神经路径表示学习,但它们在大规模图上遍历时存在连通性不足的问题。元关系学习的新方向是学习在低资源环境下对未知关系提取的快速适应使用。

实体发现从文本中获取面向实体的知识,将知识融合到知识图谱中。以序列对序列的方式探讨实体识别,实体类标讨论有噪声的类型标签和零样本,实体消歧和对齐学习统一嵌入的迭代对齐模型,解决有限数量的对齐种子样本问题。但是,如果新对齐的实体性能较差,则可能会面临错误积累问题。近年来,针对语言的知识越来越多,跨语言知识对齐的研究应运而生。

关系抽取在距离监督的假设下存在噪声模式,尤其是在不同领域的文本语料库中。因此,弱监督关系提取对于减轻噪声标记的影响是很重要的,例如,以句子包为输入的多实例学习,软选择超过实例的注意机制[90]以减少噪声模式,以及基于rl的方法将实例选择描述为硬决策。另一个原则是学习尽可能丰富的表示。由于深度神经网络可以解决传统特征提取方法中的误差传播问题,因此该领域以基于dnn的模型为主,如表四所示。

表四: 神经关系提取与研究进展综述

5 时序知识图

当前的知识图谱研究多集中在静态知识图上,事实不随时间变化,而对知识图谱的时间动态研究较少。然而,时间信息是非常重要的,因为结构化的知识只在一个特定的时期内存在,而事实的演变遵循一个时间序列。最近的研究开始将时间信息引入到KRL和KGC中,与之前的静态知识图相比,这被称为时序知识图。同时对时间嵌入和关系嵌入进行了研究。

6 知识图谱嵌入应用

丰富的结构化知识对人工智能应用非常有用。但是如何将这些符号化知识集成到现实世界应用的计算框架中仍然是一个挑战。本节介绍几种最新的基于dnn的知识驱动方法,以及NLU、推荐和问题回答方面的应用。附录E中介绍了其他应用,如数字健康和搜索引擎。

6.1自然语言理解

知识感知NLU将结构化的知识注入到统一的语义空间中,增强了语言表示。近年来,知识驱动的发展利用了显性事实知识和隐性语言表示,并探索了许多NLU任务。Chen等人[22]提出了两个知识图谱上的双图随机游动,即提出了一个基于槽的语义知识图谱和一个基于词的词汇知识图谱,以考虑口语理解中的槽间关系。Wang等[156]通过加权的词-概念嵌入,将基于知识概念化的短文本表示学习加以扩充。Peng等[118]整合外部知识库,构建用于社会短文本事件分类的异构信息图。

语言建模是一项基本的NLP任务,它根据给定的顺序预测前面的单词。传统的语言建模方法没有利用文本语料库中经常出现的实体来挖掘事实知识。如何将知识整合到语言表达中,越来越受到人们的关注。知识图谱语言模型(Knowledge graph language model, KGLM)[96]学习通过选择和复制实体来呈现知识。ERNIE-Tsinghua[205]通过聚合的预训练和随机掩蔽来融合信息实体。BERT-MK[62]对图上下文知识进行编码,主要关注医学语料库。ERNIE- baidu[142]引入了命名实体掩蔽和短语掩蔽来将知识整合到语言模型中,ERNIE 2.0[143]通过持续的多任务学习对其进行了进一步的改进。Petroni等[119]对语言模型的大规模训练和知识图谱的查询进行了反思,对语言模型和知识库进行了分析,发现通过预训练语言模型可以获得一定的事实知识。

6.2 问答

基于知识图谱的问答(KG-QA)利用知识图谱中的事实回答自然语言问题。基于神经网络的方法在分布式语义空间中表示问题和答案,也有一些方法对常识推理进行符号知识注入。

6.3 推荐系统

基于用户历史信息的协同过滤是推荐系统研究的热点。然而,它往往不能解决稀疏性问题和冷启动问题。将知识图谱作为外部信息进行集成,使推荐系统具有常识性推理能力。

通过注入基于知识图谱的边侧信息(如实体、关系和属性),许多人致力于基于嵌入的正则化以改进推荐。协同CKE[195]通过翻译KGE模型和堆叠的自动编码器联合训练KGEs、物品的文本信息和视觉内容。DKN[154]注意到时间敏感和主题敏感的新闻文章是由压缩的实体和常识组成的,它通过一个知识感知CNN模型将知识图谱与多通道的单词实体对齐的文本输入合并在一起。然而,DKN不能以端到端方式进行训练,因为实体嵌入需要提前学习。为了实现端到端训练,MKR[155]通过共享潜在特征和建模高阶项-实体交互,将多任务知识图谱表示和推荐关联起来。其他文献考虑知识图谱的关系路径和结构,而KPRN[160]将用户与项目之间的交互视为知识图谱中的实体-关系路径,并利用LSTM对该路径进行偏好推理,获取顺序依赖关系。PGPR[170]在基于知识图谱的用户-物品交互的基础上,实现了增强策略引导的路径推理。KGAT[159]将图注意网络应用于实体-关系和用户-物品图的协作知识图谱上,通过嵌入传播和基于注意的聚合对高阶连通性进行编码。

7 未来的发展方向

为了解决知识表示及其相关应用的挑战,人们做了很多努力。但仍存在一些难以解决的问题和有希望的未来方向。

7.1 复杂推理

知识表示和推理的数值计算需要一个连续的向量空间来捕获实体和关系的语义。虽然基于嵌入的方法对于复杂的逻辑推理有一定的局限性,但关系路径和符号逻辑的两个方向值得进一步探讨。递归关系路径编码、基于GNN的消息传递知识图谱、基于强化学习的路径查找和推理等方法是处理复杂推理的有效方法。对于逻辑规则和嵌入的组合,最近的著作[124,202]将马尔科夫逻辑网络与KGE结合起来,旨在利用逻辑规则并处理它们的不确定性。利用有效的嵌入技术实现不确定性和领域知识的概率推理是一个值得关注的研究方向。

7.2 统一框架

已有多个知识图谱表示学习模型被证明是等价的,如Hayshi和Shimbo[61]证明了在一定约束条件下,HOIE和ComplEx在链接预测的数学上是等价的。ANALOGY [91]提供了几种代表性模型的统一视图,包括DistMult、ComplEx和HolE。Wang等人[162]探索了几种双线性模型之间的联系。Chandrahas等[133]探讨了加法和乘法KRL模型的几何理解。大部分工作分别采用不同的模型对知识获取KGC和关系提取进行了阐述。Han等人[57]将两者放在同一框架下,提出了一种相互关注的知识图谱与文本信息共享的联合学习框架。对知识表示和推理的统一理解研究较少。然而,以类似于图网络[5]的统一框架的方式进行统一的研究,将是值得填补研究空白的。

7.3 可解释性

知识表示和注入的可解释性是知识获取和实际应用的关键问题。已经为可解释性作了初步的努力。ITransF[175]使用稀疏向量进行知识迁移,并用注意力可视化进行解释。CrossE[200]通过使用基于嵌入的路径搜索来生成链接预测的解释,探索了知识图谱的解释方案。然而,最近的神经模型在透明性和可解释性方面存在局限性,尽管它们取得了令人印象深刻的性能。一些方法结合了黑盒神经模型和符号推理,通过合并逻辑规则来提高互操作性。可解释性可以说服人们相信预测。因此,进一步的工作应该是提高预测知识的可解释性和可靠性。

7.4 可扩展性

可扩展性是大规模知识图谱的关键。在计算效率和模型表达性之间存在一种权衡。几种嵌入方法都是利用简化来降低计算成本,如利用循环相关运算来简化张量积[113]。然而,这些方法仍然难以扩展到数百万个实体和关系。

使用马尔可夫逻辑网络等概率逻辑推理需要大量的计算,因此很难扩展到大规模的知识图谱。最近的一个神经逻辑模型[124]中的规则是通过简单的穷举搜索生成的,这使得它在大规模的知识图谱上显得不足。ExpressGNN[202]试图使用NeuralLP[186]进行有效的规则归纳。但是,要处理复杂的深层架构和不断增长的知识图谱,还有很长的路要走。

7.5 知识聚合

全局知识的聚合是知识感知应用的核心。例如,推荐系统使用知识图谱对用户-物品交互进行建模,联合对文本进行分类,将文本和知识图谱编码到语义空间中。现有的知识聚合方法大多设计了注意机制和GNNs等神经网络结构。自然语言处理社区已经从大规模的通过Transformer和BERT模型等变体的训练中得到了发展,而最近的一项发现[119]表明,在非结构化文本上的训练预训练语言模型实际上可以获得一定的事实知识。大规模的训练是一种直接的知识注入方式。然而,以一种有效的、可解释的方式重新思考知识聚合的方式也具有重要的意义。

7.6 自动构建和动态知识图谱

当前的知识图谱高度依赖于手工构建,这是一种劳动密集型和昂贵的工作。知识图谱在不同认知智能领域的广泛应用,要求从大规模非结构化内容中自动构建知识图谱。目前的研究主要集中在已有知识图谱监督下的半自动构建方面。面对多模态性、异构性和大规模的应用,自动构建仍然面临着巨大的挑战。

主流的研究主要集中在静态知识图谱上,在预测时间范围有效性和学习时间信息和实体动态方面也有一些工作。许多事实只在特定的时期内有效。考虑到知识图铺的时间特性,动态知识图谱可以解决传统知识表示和推理的局限性。

8 结论

知识图谱作为人类知识的集合,随着知识表示学习、知识获取方法的出现和知识感知应用的广泛,知识图谱的研究越来越受到重视。本文从四个方面进行了全面的综述: 1)知识图谱嵌入,从嵌入空间、评分指标、编码模型、外部信息嵌入、训练策略等方面进行了全方位的系统综述; 2)从嵌入学习、关系路径推理、逻辑规则推理三个角度对实体发现、关系提取、图补全的知识获取;时序知识图表示学习与完成;4) 在自然语言理解,推荐系统,问题回答和其他杂项应用上的真实世界的知识感知应用。此外,还介绍了数据集和开源库的一些有用资源,并对未来的研究方向进行了讨论。知识图谱承载着一个庞大的研究社区,并具有广泛的方法和应用。我们进行这项综述是为了总结当前有代表性的研究工作和趋势,并期望它能促进未来的研究。

成为VIP会员查看完整内容
0
142

【导读】近年来,随着网络数据量的不断增加,挖掘图形数据已成为计算机科学领域的热门研究课题,在学术界和工业界都得到了广泛的研究。 但是,大量的网络数据为有效分析带来了巨大的挑战。 因此激发了图表示的出现,该图表示将图映射到低维向量空间中,同时保持原始图结构并支持图推理。 图的有效表示的研究具有深远的理论意义和重要的现实意义,本教程将介绍图表示/网络嵌入的一些基本思想以及一些代表性模型。

关于图或网络的文献有两个名称:图表示和网络嵌入。我们注意到图和网络都指的是同一种结构,尽管它们每个都有自己的术语,例如,图和网络的顶点和边。挖掘图/网络的核心依赖于正确表示的图/网络,这使得图/网络上的表示学习成为学术界和工业界的基本研究问题。传统表示法直接基于拓扑图来表示图,通常会导致许多问题,包括稀疏性,高计算复杂性等,从而激发了基于机器学习的方法的出现,这种方法探索了除矢量空间中的拓扑结构外还能够捕获额外信息的潜在表示。因此,对于图来说,“良好”的潜在表示可以更加精确的表示图形。但是,学习网络表示面临以下挑战:高度非线性,结构保持,属性保持,稀疏性。

深度学习在处理非线性方面的成功为我们提供了研究新方向,我们可以利用深度学习来提高图形表示学习的性能,作者在教程中讨论了将深度学习技术与图表示学习相结合的一些最新进展,主要分为两类方法:面向结构的深层方法和面向属性的深层方法。

对于面向结构的方法:

  • 结构性深层网络嵌入(SDNE),专注于保持高阶邻近度。
  • 深度递归网络嵌入(DRNE),其重点是维护全局结构。
  • 深度超网络嵌入(DHNE),其重点是保留超结构。

对于面向属性的方法:

  • 专注于不确定性属性的深度变异网络嵌入(DVNE)。
  • 深度转换的基于高阶Laplacian高斯过程(DepthLGP)的网络嵌入,重点是动态属性。

本教程的第二部分就以上5种方法,通过对各个方法的模型介绍、算法介绍、对比分析等不同方面进行详细介绍。

1、Structural Deep Network Embedding

network embedding,是为网络中的节点学习出一个低维表示的方法。目的在于在低维中保持高度非线性的网络结构特征,但现有方法多采用浅层网络不足以挖掘高度非线性,或同时保留局部和全局结构特征。本文提出一种结构化深度网络嵌入方法,叫SDNE该方法用半监督的深度模型来捕捉高度非线性结构,通过结合一阶相似性(监督)和二阶相似性(非监督)来保留局部和全局特征。

2、 Deep recursive network embedding with regular equivalence

网络嵌入旨在保留嵌入空间中的顶点相似性。现有方法通常通过节点之间的连接或公共邻域来定义相似性,即结构等效性。但是,位于网络不同部分的顶点可能具有相似的角色或位置,即规则的等价关系,在网络嵌入的文献中基本上忽略了这一点。以递归的方式定义规则对等,即两个规则对等的顶点具有也规则对等的网络邻居。因此,文章中提出了一种名为深度递归网络嵌入(DRNE)的新方法来学习具有规则等价关系的网络嵌入。更具体地说,我们提出了一种层归一化LSTM,以递归的方式通过聚合邻居的表示方法来表示每个节点。

3、Structural Deep Embedding for Hyper-Networks

是在hyperedge(超边是不可分解的)的基础上保留object的一阶和二阶相似性,学习异质网络表示。于与HEBE的区别在于,本文考虑了网络high-oeder网络结构和高度稀疏性。 传统的基于clique expansion 和star expansion的方法,显式或者隐式地分解网络。也就说,分解后hyper edge节点地子集,依然可以构成一个新的超边。对于同质网络这个假设是合理地,因为同质网络地超边,大多数情况下都是根据潜在地相似性(共同地标签等)构建的。

4、 Deep variational network embedding in wasserstein space

大多数现有的嵌入方法将节点作为点向量嵌入到低维连续空间中。这样,边缘的形成是确定性的,并且仅由节点的位置确定。但是,现实世界网络的形成和发展充满不确定性,这使得这些方法不是最优的。为了解决该问题,在本文中提出了一种新颖的在Wasserstein空间中嵌入深度变分网络(DVNE)。所提出的方法学习在Wasserstein空间中的高斯分布作为每个节点的潜在表示,它可以同时保留网络结构并为节点的不确定性建模。具体来说,我们使用2-Wasserstein距离作为分布之间的相似性度量,它可以用线性计算成本很好地保留网络中的传递性。此外,我们的方法通过深度变分模型隐含了均值和方差的数学相关性,可以通过均值矢量很好地捕获节点的位置,而由方差可以很好地捕获节点的不确定性。此外,本文方法通过保留网络中的一阶和二阶邻近性来捕获局部和全局网络结构。

5、 Learning embeddings of out-of-sample nodes in dynamic networks

迄今为止的网络嵌入算法主要是为静态网络设计的,在学习之前,所有节点都是已知的。如何为样本外节点(即学习后到达的节点)推断嵌入仍然是一个悬而未决的问题。该问题对现有方法提出了很大的挑战,因为推断的嵌入应保留复杂的网络属性,例如高阶邻近度,与样本内节点嵌入具有相似的特征(即具有同质空间),并且计算成本较低。为了克服这些挑战,本文提出了一种深度转换的高阶拉普​​拉斯高斯过程(DepthLGP)方法来推断样本外节点的嵌入。 DepthLGP结合了非参数概率建模和深度学习的优势。特别是,本文设计了一个高阶Laplacian高斯过程(hLGP)来对网络属性进行编码,从而可以进行快速和可扩展的推理。为了进一步确保同质性,使用深度神经网络来学习从hLGP的潜在状态到节点嵌入的非线性转换。 DepthLGP是通用的,因为它适用于任何网络嵌入算法学习到的嵌入。

成为VIP会员查看完整内容
0
65

题目: Network Representation Learning: A Survey

摘要:

随着信息技术的广泛应用,信息网络越来越受到人们的欢迎,它可以捕获各种学科之间的复杂关系,如社交网络、引用网络、电信网络和生物网络。对这些网络的分析揭示了社会生活的不同方面,如社会结构、信息传播和交流模式。然而,在现实中,大规模的信息网络往往使网络分析任务计算昂贵或难以处理。网络表示学习是近年来提出的一种新的学习范式,通过保留网络拓扑结构、顶点内容和其它边信息,将网络顶点嵌入到低维向量空间中。这有助于在新的向量空间中方便地处理原始网络,以便进行进一步的分析。在这项调查中,我们全面回顾了目前在数据挖掘和机器学习领域的网络表示学习的文献。我们提出了新的分类法来分类和总结最先进的网络表示学习技术,根据潜在的学习机制、要保留的网络信息、以及算法设计和方法。我们总结了用于验证网络表示学习的评估协议,包括已发布的基准数据集、评估方法和开源算法。我们还进行了实证研究,以比较代表性的算法对常见数据集的性能,并分析其计算复杂性。最后,我们提出有希望的研究方向,以促进未来的研究。

作者简介:

Xingquan Zhu是佛罗里达大西洋大学计算机与电气工程和计算机科学系的教授,在中国上海复旦大学获得了计算机科学博士学位。曾在多家研究机构和大学工作过,包括微软亚洲研究院(实习)、普渡大学、佛蒙特大学和悉尼科技大学。主要研究方向:数据挖掘、机器学习、多媒体系统、生物信息学。

成为VIP会员查看完整内容
0
52

题目: Graph Summarization Methods and Applications: A Survey

摘要:

虽然计算资源的进步使处理大量数据成为可能,但人类识别这些数据模式的能力并没有相应提高。因此,压缩和简化数据的高效计算方法对于提取可操作的见解变得至关重要。特别是,虽然对数据摘要技术进行了广泛的研究,但直到最近才开始流行对相互关联的数据或图进行汇总。这项调查是一个结构化的,全面的概述了最先进的方法,以总结图形数据。我们首先讨论了图形摘要背后的动机和挑战。然后,我们根据作为输入的图形类型对摘要方法进行分类,并根据核心方法进一步组织每个类别。最后,我们讨论了总结在真实世界图上的应用,并通过描述该领域的一些开放问题进行了总结。

作者简介:

Yike Liu是密西根大学物理系五年级的博士生,也是计算机科学与工程系的一名硕士研究生。我是叶杰平教授的顾问。主要研究方向是深度学习和强化学习,尤其是在交通数据上的应用。在此之前,从事过基于图形的机器学习和数据挖掘,特别是图形总结和图形聚类,在这些工作中,开发了图形挖掘算法,帮助更好地理解底层的图形组织并理解它。

Tara Safavi是密西根大学博士研究生,研究重点是知识表示及其在以人为中心的任务中的使用、评估和解释,还对更广泛的AI+社会问题感兴趣,比如隐私、偏见和环境可持续性。研究目前得到了美国国家科学基金会(NSF)研究生奖学金和谷歌女性科技创造者奖学金的支持。

成为VIP会员查看完整内容
0
26

题目: A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications 摘要: 图形是一种重要的数据表示形式,它出现在现实世界的各种场景中。有效的图形分析可以让用户更深入地了解数据背后的内容,从而有利于节点分类、节点推荐、链路预测等许多有用的应用。然而,大多数图形分析方法都存在计算量大、空间开销大的问题。图嵌入是解决图分析问题的有效途径。它将图形数据转换为一个低维空间,其中图形结构信息和图形属性被最大程度地保留。在这项调查中,我们对图嵌入的文献进行了全面的回顾。本文首先介绍了图嵌入的形式化定义及相关概念。之后,我们提出了两个分类的图形嵌入,对应于什么挑战存在于不同的图形嵌入问题设置,以及现有的工作如何解决这些挑战,在他们的解决方案。最后,我们总结了图形嵌入在计算效率、问题设置、技术和应用场景等方面的应用,并提出了四个有前途的研究方向。

作者简介: Hongyun Cai,经验丰富的研究人员,有在研究行业工作的经验。精通计算机科学,C++,数据库,Java和机器学习。昆士兰大学计算机科学专业研究生,哲学博士。

Vincent W. Zheng,新加坡先进数字科学中心(ADSC)的研究科学家,也是伊利诺伊大学香槟分校协调科学实验室的研究附属机构。他目前领导着ADSC的大型社交项目。该项目旨在利用目前在我们的数字社会(即社交媒体)中普遍存在的巨大“人类传感器”,并实现对此类数据的社会分析,从而建立一个以人为中心的网络系统。他还对图形表示学习、深度学习、自然语言处理、移动计算等领域感兴趣,并在社交挖掘、文本挖掘、实际位置和活动识别、用户分析、移动推荐、增强现实等方面有应用。

Kevin Chen-Chuan Chang是伊利诺伊大学香槟分校计算机科学教授,他领导了数据搜索、集成和挖掘的前沿数据实验室。他在国立台湾大学获得理学学士学位,在斯坦福大学获得电机工程博士学位。他的研究涉及大规模信息访问,用于搜索、挖掘和跨结构化和非结构化大数据的集成,目前的重点是“以实体为中心”的Web搜索/挖掘和社交媒体分析。他在VLDB 2000年和2013年获得了两项最佳论文奖,2002年获得了NSF职业奖,2003年获得了NCSA院士奖,2004年和2005年获得了IBM院士奖,2008年获得了创业领导力学院院士奖,并在2001年、2004年、2005年、2006年、2010年和2011年获得了伊利诺伊大学不完整的优秀教师名单。他热衷于将研究成果带到现实世界中,并与学生共同创办了伊利诺伊大学(University of Illinois)的初创公司Cazoodle,致力于在网络上深化垂直的“数据感知”搜索。

成为VIP会员查看完整内容
0
33

题目: Graph Neural Networks: A Review of Methods and Applications

摘要: 许多学习任务都需要处理包含元素间丰富关系信息的图形数据。建模物理系统、学习分子指纹、预测蛋白质界面和疾病分类需要一个模型从图形输入中学习。在文本、图像等非结构化数据的学习等领域,对句子的依存树、图像的场景图等提取的结构进行推理是一个重要的研究课题,同时也需要建立图形推理模型。图神经网络(GNNs)是通过图节点之间的信息传递来获取图的依赖性的连接模型。与标准神经网络不同,图神经网络保留了一种状态,这种状态可以以任意深度表示来自其邻域的信息。虽然原始GNNs已经被发现很难训练到固定的点,但是最近在网络结构、优化技术和并行计算方面的进展已经使它能够成功地学习。近年来,基于图形卷积网络(GCN)、图形注意网络(GAT)、门控图形神经网络(GGNN)等图形神经网络变体的系统在上述许多任务上都表现出了突破性的性能。在这项调查中,我们提供了一个详细的检讨现有的图形神经网络模型,系统分类的应用,并提出了四个开放的问题,为今后的研究。

作者简介: Jie Zhou,CS的研究生,从事系统研究,主要研究计算机安全。他毕业于厦门大学,在罗切斯特大学获得硕士学位及博士学位。

Zhiyuan Liu,清华大学计算机系NLP实验室副教授。

成为VIP会员查看完整内容
0
72

论文题目: A Structural Graph Representation Learning Framework

论文摘要: 许多基于图的机器学习任务的成功在很大程度上取决于从图数据中学习到的适当表示。大多数工作都集中在于学习保留邻近性的节点嵌入,而不是保留节点之间结构相似性的基于结构的嵌入。这些方法无法捕获对基于结构的应用程序(如web日志中的visitor stitching)至关重要的高阶结构依赖和连接模式。在这项工作中,我们阐述了高阶网络表示学习,并提出了一个称为HONE的通用框架,用于通过节点邻域中的子图模式(network motifs, graphlet orbits/positions)从网络中学习这种结构性节点嵌入。HONE引入了一种通用的diffusion机制和一种节省空间的方法,该方法避免了使用k-step线性算子来显式构造k-step motif-based矩阵。此外,HONE被证明是快速和有效的,最坏情况下的时间复杂度几乎是线性的。实验结果表明,该算法能有效地处理大量的网络日志数据,包括链接预测和visitor stitching。

作者简介:

Ryan A. Rossi,目前在Adobe Research工作,研究领域是机器学习;涉及社会和物理现象中的大型复杂关系(网络/图形)数据的理论、算法和应用。在普渡大学获得了计算机科学博士和硕士学位。

Nesreen K. Ahmed,英特尔实验室的高级研究员。我在普渡大学计算机科学系获得博士学位,在普渡大学获得统计学和计算机科学硕士学位。研究方向是机器学习和数据挖掘,涵盖了大规模图挖掘、统计机器学习的理论和算法,以及它们在社会和信息网络中的应用。

成为VIP会员查看完整内容
0
50
小贴士
相关VIP内容
相关资讯
图数据表示学习综述论文
专知
29+阅读 · 2019年6月10日
网络表示学习综述:一文理解Network Embedding
PaperWeekly
24+阅读 · 2018年8月14日
网络表示学习领域(NRL/NE)必读论文汇总
AI科技评论
10+阅读 · 2018年2月18日
Representation Learning on Network 网络表示学习
全球人工智能
7+阅读 · 2017年10月19日
Representation Learning on Network 网络表示学习笔记
全球人工智能
3+阅读 · 2017年9月30日
相关论文
Financial Time Series Representation Learning
Philippe Chatigny,Jean-Marc Patenaude,Shengrui Wang
8+阅读 · 2020年3月27日
Shaoxiong Ji,Shirui Pan,Erik Cambria,Pekka Marttinen,Philip S. Yu
72+阅读 · 2020年2月2日
Wenwu Zhu,Xin Wang,Peng Cui
18+阅读 · 2020年1月2日
Guanglin Niu,Yongfei Zhang,Bo Li,Peng Cui,Si Liu,Jingyang Li,Xiaowei Zhang
6+阅读 · 2019年12月28日
Domain Representation for Knowledge Graph Embedding
Cunxiang Wang,Feiliang Ren,Zhichao Lin,Chenxv Zhao,Tian Xie,Yue Zhang
8+阅读 · 2019年9月11日
Aravind Sankar,Yanhong Wu,Liang Gou,Wei Zhang,Hao Yang
37+阅读 · 2019年6月15日
Ziwei Zhang,Peng Cui,Wenwu Zhu
36+阅读 · 2018年12月11日
Peter W. Battaglia,Jessica B. Hamrick,Victor Bapst,Alvaro Sanchez-Gonzalez,Vinicius Zambaldi,Mateusz Malinowski,Andrea Tacchetti,David Raposo,Adam Santoro,Ryan Faulkner,Caglar Gulcehre,Francis Song,Andrew Ballard,Justin Gilmer,George Dahl,Ashish Vaswani,Kelsey Allen,Charles Nash,Victoria Langston,Chris Dyer,Nicolas Heess,Daan Wierstra,Pushmeet Kohli,Matt Botvinick,Oriol Vinyals,Yujia Li,Razvan Pascanu
6+阅读 · 2018年10月17日
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo,Lu Cheng,Jundong Li,P. Richard Hahn,Huan Liu
7+阅读 · 2018年9月25日
Srinivas Ravishankar, Chandrahas,Partha Pratim Talukdar
6+阅读 · 2018年1月8日
Top