深度强化学习将深度学习的感知能力和强化学习的决策能力相结合,可以直接根据输入的图像进行控制,是一种更接近人类思维方式的人工智能方法,深度学习具有较强的感知能力,但是缺乏一定的决策能力;而强化学习具有决策能力,对感知问题束手无策。因此,将两者结合起来,优势互补,为复杂系统的感知决策问题提供了解决思路。本次课程包括DQN,REINFORCE,QAC,AAC。

github链接:https://github.com/xbresson/CE7454_2019/tree/master/codes/labs_lecture15

成为VIP会员查看完整内容
0
77

相关内容

用已知某种或某些特性的样本作为训练集,以建立一个数学模型(如模式识别中的判别模型,人工神经网络法中的权重模型等),再用已建立的模型来预测未知样本,此种方法称为有监督学习。是最常见的机器学习方法。

DeepMind 与 UCL 合作推出了一门深度学习与强化学习进阶课程,以在线视频形式呈现。课件包括18个课程的16个PPT共开放,每节课都长达 1 小时 40 分钟,内容从深度学习框架 TensoFlow 的介绍到构建游戏智能体,可谓全面。

该课程最初在伦敦大学学院(UCL)进行,为方便在线观看进行了录像。多位 DeepMind 的研究人员、UCL 教师参与了课程的设计。

课程由两部分组成,一是包含深度神经网络的机器学习,二是利用强化学习进行预测和控制,两个部分相互穿插。在探讨深度学习的过程中,这两条线交汇在一起,其中的深度神经网络被训练为强化学习背景下的函数逼近器。

课程中的深度学习部分首先介绍了神经网络及使用 TensorFlow 的监督学习,接下来探讨了卷积神经网络、循环神经网络、端到端及基于能量的学习、优化方法、无监督学习、注意力及记忆。涉及的应用领域包括目标识别和自然语言处理。

视频课程地址:https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs

PPT下载链接:https://pan.baidu.com/s/1BJNjnF-nXN4LjQ3XvtxdaQ 提取码: 8s86

成为VIP会员查看完整内容
0
42

课程介绍: 最近,图神经网络 (GNN) 在各个领域越来越受到欢迎,包括社交网络、知识图谱、推荐系统,甚至生命科学。GNN 在对图形中节点间的依赖关系进行建模方面能力强大,使得图分析相关的研究领域取得了突破性进展。本次课程对比传统的卷积神经网络以及图谱图卷积与空间图卷积,从理论知识入手,并结合相关论文进行详细讲解。

主讲人: Xavier Bresson,人工智能/深度学习方面的顶级研究员,培训师和顾问。在“图深度学习”上的NeurIPS'17和CVPR'17(2019年顶级人工智能会议排名)上的演讲者,在剑桥,加州大学洛杉矶分校,布朗,清华,庞加莱,海德堡等地进行了30多次国际演讲。

课程大纲:

  • 传统卷积神经网络
  • 谱图图卷积
  • 空间图卷积
  • 总结
成为VIP会员查看完整内容
0
163
小贴士
相关论文
Optimization for deep learning: theory and algorithms
Ruoyu Sun
55+阅读 · 2019年12月19日
Object-centric Forward Modeling for Model Predictive Control
Yufei Ye,Dhiraj Gandhi,Abhinav Gupta,Shubham Tulsiani
3+阅读 · 2019年10月8日
Deep Learning for Energy Markets
Michael Polson,Vadim Sokolov
3+阅读 · 2019年4月10日
Chris Alberti,Kenton Lee,Michael Collins
5+阅读 · 2019年3月21日
Deep Graph Infomax
Petar Veličković,William Fedus,William L. Hamilton,Pietro Liò,Yoshua Bengio,R Devon Hjelm
4+阅读 · 2018年12月21日
Hierarchical Deep Multiagent Reinforcement Learning
Hongyao Tang,Jianye Hao,Tangjie Lv,Yingfeng Chen,Zongzhang Zhang,Hangtian Jia,Chunxu Ren,Yan Zheng,Changjie Fan,Li Wang
4+阅读 · 2018年9月25日
Antoine J. -P. Tixier
8+阅读 · 2018年8月30日
Xiangyu Zhao,Long Xia,Liang Zhang,Zhuoye Ding,Dawei Yin,Jiliang Tang
6+阅读 · 2018年5月7日
Tom Young,Devamanyu Hazarika,Soujanya Poria,Erik Cambria
7+阅读 · 2018年2月20日
Xiangyu Zhao,Liang Zhang,Zhuoye Ding,Dawei Yin,Yihong Zhao,Jiliang Tang
12+阅读 · 2018年1月5日
Top