深度强化学习将深度学习的感知能力和强化学习的决策能力相结合,可以直接根据输入的图像进行控制,是一种更接近人类思维方式的人工智能方法,深度学习具有较强的感知能力,但是缺乏一定的决策能力;而强化学习具有决策能力,对感知问题束手无策。因此,将两者结合起来,优势互补,为复杂系统的感知决策问题提供了解决思路。本次课程包括DQN,REINFORCE,QAC,AAC。

github链接:https://github.com/xbresson/CE7454_2019/tree/master/codes/labs_lecture15

成为VIP会员查看完整内容
65+
0+

相关内容

用已知某种或某些特性的样本作为训练集,以建立一个数学模型(如模式识别中的判别模型,人工神经网络法中的权重模型等),再用已建立的模型来预测未知样本,此种方法称为有监督学习。是最常见的机器学习方法。

机器人和自主系统在现代经济中扮演着重要的角色。定制机器人显著提高了生产率、操作安全性和产品质量。然而,人们通常通过编程操作这些机器人来完成较小的领域的特定任务,而无法快速适应新任务和新情况。廉价、轻便和灵活的机器人硬件的出现为将机器人的自主能力提升到前所未有的水平提供了机会。新的机器人硬件在日常环境中的一个主要挑战是处理现实世界的持续变化性和不确定性。为了应对这一挑战,我们必须解决感知和行动之间的协同作用:一方面,机器人的感知自适应地指导其行动,另一方面,它的行动产生了新的感知信息,用于决策。我认为,实现通用机器人自治的关键一步是将感知和动作紧密地结合起来。

新兴的人工智能计算工具已经证明了成功的希望,并构成了在非结构化环境中增强机器人感知和控制的理想候选。机器人的实体本质迫使我们超越现有的从无实体数据集学习的范式,并激励我们开发考虑物理硬件和动态复杂系统的新算法。

本论文的研究工作是建立可通用的机器人感知和控制的方法和机制。我们的工作表明,感知和行动的紧密耦合,有助于机器人通过感官与非结构化的世界进行交互,灵活地执行各种任务,并适应地学习新任务。我们的研究结果表明,从低级的运动技能到高级的任务理解三个抽象层次上解剖感知-动作循环,可以有效地促进机器人行为的鲁棒性和泛化。我们规划的研究工作是处理日益复杂的任务,展现出我们朝着圣杯目标的路线图:在现实世界中构建长期的、通用的机器人自治。

成为VIP会员查看完整内容
yukezhu_phd_dissertation.pdf
closing_perception_action_loop.pdf
15+
0+

MIT新书《强化学习与最优控制》,REINFORCEMENT LEARNING AND OPTIMAL CONTROL https://web.mit.edu/dimitrib/www/Slides_Lecture13_RLOC.pdf https://web.mit.edu/dimitrib/www/RLbook.html

成为VIP会员查看完整内容
13+
0+
Top