课程题目

From Languages to Information

课程内容

《从语言到信息》是一门(半)翻转的课程,有很多在线材料。大部分讲座都有录像,你可以在家里看。每周的测验和编程作业将自动上传和评分EdX提供讲座、测验和家庭作业。网络世界以语言和社交网络的形式存在着大量的非结构化信息。学习如何理解它,以及如何通过语言与人类互动,从回答问题到给出建议。从人类语言文本、语音、网页、社交网络中提取意义、信息和结构。介绍方法(字符串算法、编辑距离、语言建模、机器学习分类器、神经嵌入、倒排索引、协作过滤、PageRank)、应用(聊天机器人、情感分析、信息检索、问答、文本分类、社交网络、推荐系统),以及两者的伦理问题。

课程嘉宾

Dan Jurafsky ,人文学科教授,斯坦福大学计算机科学教授兼语言学主席,研究自然语言处理及其在认知和社会科学中的应用。

成为VIP会员查看完整内容
1+
0+

相关内容

Dan Jurafsky ,人文学科教授,斯坦福大学计算机科学教授兼语言学主席,研究自然语言处理及其在认知和社会科学中的应用。

课程名称: CS276: Information Retrieval and Web Search(Spring quarter 2019

课程简介: 信息检索(Information Retrieval)是用户进行信息查询和获取的主要方式,是查找信息的方法和手段。 IR是自然语言处理(NLP)领域中的第一个,并且仍然是最重要的问题之一。 网络搜索是将信息检索技术应用于世界上最大的文本语料库-网络-这是大多数人最频繁地与IR系统交互的区域。

在本课程中,我们将介绍构建基于文本的信息系统的基本和高级技术,包括以下主题:

  • 高效的文本索引
  • 布尔和向量空间检索模型
  • 评估和界面问题
  • Web的IR技术,包括爬网,基于链接的算法和元数据使用
  • 文档聚类和分类
  • 传统和基于机器学习的排名方法

讲师介绍: Christopher Manning,SAIL 新任负责人,Christopher Manning于1989年在澳大利亚国立大学取得三个学士学位(数学、计算机和语言学),并于 1994 年获得斯坦福大学语言学博士学位。 他曾先后在卡内基梅隆大学、悉尼大学等任教,1999 年回到母校斯坦福,就职于计算机科学和语言学系,是斯坦福自然语言处理组(Stanford NLP Group)的创始成员及负责人。重返斯坦福之后,他一待就是 19 年。 Manning 的研究目标是以智能的方式实现人类语言的处理、理解及生成,研究领域包括树形 RNN 、情感分析、基于神经网络的依存句法分析、神经机器翻译和深度语言理解等,是一位 NLP 领域的深度学习开拓者。他是国际计算机学会 (ACM)、国际人工智协会(AAAI)、国际计算语言学会(ACL)等国际权威学术组织的 Fellow,曾获 ACL、EMNLP、COLING、CHI 等国际顶会最佳论文奖,著有《统计自然语言处理基础》、《信息检索导论》等自然语言处理著名教材。

Pandu Nayak,谷歌工程师,负责信息检索方面的研究。 在加入Google之前,我曾是Stratify,Inc.的首席架构师和首席技术官。在那里,帮助开发了成功的Stratify Legal Discovery服务。

成为VIP会员查看完整内容
8+
0+

报告主题:Recent Breakthroughs in Natural Language Processing

报告摘要:自然语言处理是计算机科学、语言学和机器学习的交叉点,它关注计算机与人类之间使用自然语言中的沟通交流。总之,NLP致力于让计算机能够理解和生成人类语言。NLP技术应用于多个领域,比如天猫精灵和Siri这样的语音助手,还有机器翻译和文本过滤等。机器学习是受NLP影响最深远的领域之一,尤为突出的是深度学习技术。该领域分为以下三个部分:语音识别、自然语言理解、自然语言生成。本次报告结合NLP的最新突破,分别剖析不同领域的研究进展,并对未来的研究方向作出简单概述。

邀请嘉宾:Christopher Manning,SAIL 新任负责人,于1989年在澳大利亚国立大学取得三个学士学位(数学、计算机和语言学),并于 1994 年获得斯坦福大学语言学博士学位。 他曾先后在卡内基梅隆大学、悉尼大学等任教,1999 年回到母校斯坦福,就职于计算机科学和语言学系,是斯坦福自然语言处理组(Stanford NLP Group)的创始成员及负责人。重返斯坦福之后,他一待就是 19 年。

Manning 的研究目标是以智能的方式实现人类语言的处理、理解及生成,研究领域包括树形 RNN 、情感分析、基于神经网络的依存句法分析、神经机器翻译和深度语言理解等,是一位 NLP 领域的深度学习开拓者。他是国际计算机学会 (ACM)、国际人工智协会(AAAI)、国际计算语言学会(ACL)等国际权威学术组织的 Fellow,曾获 ACL、EMNLP、COLING、CHI 等国际顶会最佳论文奖,著有《统计自然语言处理基础》、《信息检索导论》等自然语言处理著名教材。

成为VIP会员查看完整内容
2019-10-31-02-01-Christopher-Manning.pdf
4+
0+

题目: TextCube: Automated Construction and Multidimensional Exploration

简介: 当今社会沉浸在大量文本数据中,从新闻文章到社交媒体,研究文献,病历和公司报告。数据科学和工程学的一大挑战是开发有效且可扩展的方法,以从海量文本数据中提取结构和知识,以满足各种应用的需要,而无需广泛的人工注释。在本教程中,我们将展示TextCube提供了一种可以满足此类信息需求的关键信息组织结构。我们概述了一组最近开发的数据驱动方法,这些方法可帮助从大规模的特定于领域的文本语料库自动构建TextCube,并表明如此构建的TextCube将增强各种应用程序的文本探索和分析。我们专注于可扩展,弱监督,独立于域,与语言无关且有效的新TextCube构建方法(即从各种领域的大型语料库生成高质量的TextCube)。我们将用真实的数据集演示如何构造TextCube来协助对大量文本语料库进行多维分析。

嘉宾介绍: 韩家炜,美国伊利诺伊大学香槟分校计算机系教授,IEEE和ACM院士,美国信息网络学术研究中心主任。曾担任KDD、SDM和ICDM等国际知名会议的程序委员会主席,创办了ACM TKDD学报并任主编。在数据挖掘、数据库和信息网络领域发表论文600余篇。 韩家炜主页:https://hanj.cs.illinois.edu/

Jingbo Shang, 伊利诺伊州香槟分校博士。 他的研究专注于以最少的人力从大量文本语料库中挖掘和构建结构化知识。 他的研究获得了多个著名奖项的认可,包括Yelp数据集挑战赛的大奖(2015年),Google博士在结构化数据和数据库管理领域的奖学金(2017-2019年)。

成为VIP会员查看完整内容
3+
0+
Top