EMNLP(Conference on Empirical Methods in Natural Language Processing)是计算语言学和自然语言处理领域的顶级国际会议,由ACL旗下SIGDAT组织,每年举办一次,Google Scholar计算语言学刊物指标中排名第二,是CCF-B类推荐会议。今年EMNLP 2020将于2020年11月16日至20日以在线会议的形式举办。本篇为大家带来EMNLP2020在线Tutorial《Interpreting Predictions of NLP Models》教程,系统性讲解了自然语言处理模型可解释性预测,不可错过!

虽然神经NLP模型具有高度的表示学习能力和良好性能,但它们也会以违反直觉的方式系统性失败,并且在决策过程中不透明。本教程将提供可解释技术的背景知识,即可解释NLP模型预测的方法。我们将首先将具体实例的解释置于理解模型的其他方法的上下文中(例如,探测,数据集分析)。接下来,我们将全面研究具体例子的解释,包括显著性映射、输入扰动(例如LIME、输入减少)、对抗性攻击和影响函数。除了这些描述之外,我们还将介绍为各种NLP任务创建和可视化解释的源代码。最后,我们将讨论该领域的开放问题,如评价、扩展和改进解释方法。

https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020/

成为VIP会员查看完整内容
0
21

相关内容

自然语言处理(NLP)是语言学,计算机科学,信息工程和人工智能的一个子领域,与计算机和人类(自然)语言之间的相互作用有关,尤其是如何对计算机进行编程以处理和分析大量自然语言数据 。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

涵盖了主要技术,在压缩、扩展中的使用,以及许多未预料到的用例(例如攻击、NAT、传输)

https://slideslive.com/38940102

成为VIP会员查看完整内容
0
18

近年来,规模在自然语言处理的快速发展中发挥了核心作用。虽然基准测试被越来越大的模型所主导,但高效的硬件使用对于它们的广泛采用和该领域的进一步发展至关重要。在这个尖端的教程中,我们将概括自然语言处理的最先进技术。在建立这些基础之后,我们将介绍广泛的提高效率的技术,包括知识蒸馏、量化、修剪、更高效的架构,以及案例研究和实际实现技巧。

https://2020.emnlp.org/tutorials

成为VIP会员查看完整内容
0
24

【导读】国际万维网大会(The Web Conference,简称WWW会议)是由国际万维网会议委员会发起主办的国际顶级学术会议,创办于1994年,每年举办一届,是CCF-A类会议。WWW 2020将于2020年4月20日至4月24日在中国台湾台北举行。本届会议共收到了1129篇长文投稿,录用217篇长文,录用率为19.2%。这周会议已经召开。来自美国Linkedin、AWS等几位学者共同给了关于在工业界中可解释人工智能的报告,讲述了XAI概念、方法以及面临的挑战和经验教训。

人工智能在我们的日常生活中扮演着越来越重要的角色。此外,随着基于人工智能的解决方案在招聘、贷款、刑事司法、医疗和教育等领域的普及,人工智能对个人和职业的影响将是深远的。人工智能模型在这些领域所起的主导作用已经导致人们越来越关注这些模型中的潜在偏见,以及对模型透明性和可解释性的需求。此外,模型可解释性是在需要可靠性和安全性的高风险领域(如医疗和自动化交通)以及具有重大经济意义的关键工业应用(如预测维护、自然资源勘探和气候变化建模)中建立信任和采用人工智能系统的先决条件。

因此,人工智能的研究人员和实践者将他们的注意力集中在可解释的人工智能上,以帮助他们更好地信任和理解大规模的模型。研究界面临的挑战包括 (i) 定义模型可解释性,(ii) 为理解模型行为制定可解释性任务,并为这些任务开发解决方案,最后 (iii)设计评估模型在可解释性任务中的性能的措施。

在本教程中,我们将概述AI中的模型解译性和可解释性、关键规则/法律以及作为AI/ML系统的一部分提供可解释性的技术/工具。然后,我们将关注可解释性技术在工业中的应用,在此我们提出了有效使用可解释性技术的实践挑战/指导方针,以及在几个网络规模的机器学习和数据挖掘应用中部署可解释模型的经验教训。我们将介绍不同公司的案例研究,涉及的应用领域包括搜索和推荐系统、销售、贷款和欺诈检测。最后,根据我们在工业界的经验,我们将确定数据挖掘/机器学习社区的开放问题和研究方向。

https://sites.google.com/view/www20-explainable-ai-tutorial

成为VIP会员查看完整内容
0
114

在过去的几年中,自然语言处理领域发生了许多巨大的变化。在这篇介绍性的演讲中,我们将简要讨论自然语言处理中最大的挑战是什么,然后深入探讨NLP中最重要的深度学习里程碑。我们将包括词嵌入,语言建模和机器翻译的递归神经网络,以及最近兴起的基于Transformer的模型。

Jiři Materna:他是一个机器学习专家。在完成博士学位后,他在Seznam担任研究主管。现在作为一个自由职业者提供机器学习解决方案和咨询。他是机器学习学院的创始人和讲师,也是布拉格国际机器学习会议的组织者。

成为VIP会员查看完整内容
0
49
小贴士
相关论文
Interpreting Imagined Speech Waves with Machine Learning techniques
Abhiram Singh,Ashwin Gumaste
0+阅读 · 11月25日
Jesse Vig,Sebastian Gehrmann,Yonatan Belinkov,Sharon Qian,Daniel Nevo,Simas Sakenis,Jason Huang,Yaron Singer,Stuart Shieber
0+阅读 · 11月22日
Sarath Sreedharan,Anagha Kulkarni,Tathagata Chakraborti,David E. Smith,Subbarao Kambhampati
0+阅读 · 11月22日
Ramon Vilarino,Renato Vicente
0+阅读 · 11月11日
Interpretable Adversarial Training for Text
Samuel Barham,Soheil Feizi
4+阅读 · 2019年5月30日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Seq2Seq2Sentiment: Multimodal Sequence to Sequence Models for Sentiment Analysis
Hai Pham,Thomas Manzini,Paul Pu Liang,Barnabas Poczos
4+阅读 · 2018年8月6日
Chaitanya Malaviya,Pedro Ferreira,André F. T. Martins
3+阅读 · 2018年5月21日
Po-Sen Huang,Chong Wang,Sitao Huang,Dengyong Zhou,Li Deng
3+阅读 · 2018年4月18日
Quanshi Zhang,Ying Nian Wu,Song-Chun Zhu
13+阅读 · 2018年2月14日
Top