自然语言处理(NLP)是语言学,计算机科学,信息工程和人工智能的一个子领域,与计算机和人类(自然)语言之间的相互作用有关,尤其是如何对计算机进行编程以处理和分析大量自然语言数据 。

SIGIR 2020 Summer School,欢迎大家参加。

http://t.cn/A6yO8gtN

Time Zone: GMT+8

8:00am-9:30am
Susan Dumais, Personalized Search
9:30am-11:00am
Jimmy Lin, Natural Language Processing and Information Retrieval: Together at Last
11:30am-1:00pm
Luke Zettlemoyer, Recent Advance...全文

0
0

Image descriptions can help visually impaired people to quickly understand the image content. While we made significant progress in automatically describing images and optical character recognition, current approaches are unable to include written text in their descriptions, although text is omnipresent in human environments and frequently critical to understand our surroundings. To study how to comprehend text in the context of an image we collect a novel dataset, TextCaps, with 145k captions for 28k images. Our dataset challenges a model to recognize text, relate it to its visual context, and decide what part of the text to copy or paraphrase, requiring spatial, semantic, and visual reasoning between multiple text tokens and visual entities, such as objects. We study baselines and adapt existing approaches to this new task, which we refer to as image captioning with reading comprehension. Our analysis with automatic and human studies shows that our new TextCaps dataset provides many new technical challenges over previous datasets.

0
0
下载
预览

We test the hypothesis that the extent to which one obtains information on a given topic through Wikipedia depends on the language in which it is consulted. Controlling the size factor, we investigate this hypothesis for a number of 25 subject areas. Since Wikipedia is a central part of the web-based information landscape, this indicates a language-related, linguistic bias. The article therefore deals with the question of whether Wikipedia exhibits this kind of linguistic relativity or not. From the perspective of educational science, the article develops a computational model of the information landscape from which multiple texts are drawn as typical input of web-based reading. For this purpose, it develops a hybrid model of intra- and intertextual similarity of different parts of the information landscape and tests this model on the example of 35 languages and corresponding Wikipedias. In this way the article builds a bridge between reading research, educational science, Wikipedia research and computational linguistics.

0
0
下载
预览

Motivation: Recognizing named entities (NER) and their associated attributes like negation are core tasks in natural language processing. However, manually labeling data for entity tasks is time consuming and expensive, creating barriers to using machine learning in new medical applications. Weakly supervised learning, which automatically builds imperfect training sets from low cost, less accurate labeling rules, offers a potential solution. Medical ontologies are compelling sources for generating labels, however combining multiple ontologies without ground truth data creates challenges due to label noise introduced by conflicting entity definitions. Key questions remain on the extent to which weakly supervised entity classification can be automated using ontologies, or how much additional task-specific rule engineering is required for state-of-the-art performance. Also unclear is how pre-trained language models, such as BioBERT, improve the ability to generalize from imperfectly labeled data. Results: We present Trove, a framework for weakly supervised entity classification using medical ontologies. We report state-of-the-art, weakly supervised performance on two NER benchmark datasets and establish new baselines for two entity classification tasks in clinical text. We perform within an average of 3.5 F1 points (4.2%) of NER classifiers trained with hand-labeled data. Automatically learning label source accuracies to correct for label noise provided an average improvement of 3.9 F1 points. BioBERT provided an average improvement of 0.9 F1 points. We measure the impact of combining large numbers of ontologies and present a case study on rapidly building classifiers for COVID-19 clinical tasks. Our framework demonstrates how a wide range of medical entity classifiers can be quickly constructed using weak supervision and without requiring manually-labeled training data.

0
0
下载
预览

Establishing the authorship of online texts is a fundamental issue to combat several cybercrimes. Unfortunately, some platforms limit the length of the text, making the challenge harder. Here, we aim at identifying the author of Twitter messages limited to 140 characters. We evaluate popular stylometric features, widely used in traditional literary analysis, which capture the writing style at different levels (character, word, and sentence). We use a public database of 93 users, containing 1142 to 3209 Tweets per user. We also evaluate the influence of the number of Tweets per user for enrolment and testing. If the amount is sufficient (>500), a Rank 1 of 97-99% is achieved. If data is scarce (e.g. 20 Tweets for testing), the Rank 1 with the best individual feature method ranges from 54.9% (100 Tweets for enrolment) to 70.6% (1000 Tweets). By combining the available features, a substantial improvement is observed, reaching a Rank 1 of 70% when using 100 Tweets for enrolment and only 20 for testing. With a bigger hit list size, accuracy of the latter case increases to 86.4% (Rank 5) or 95% (Rank 20). This demonstrates the feasibility of identifying writers of digital texts, even with few data available.

0
0
下载
预览

In this paper, we describe a methodology to predict sentiment in code-mixed tweets (hindi-english). Our team called verissimo.manoel in CodaLab developed an approach based on an ensemble of four models (MultiFiT, BERT, ALBERT, and XLNET). The final classification algorithm was an ensemble of some predictions of all softmax values from these four models. This architecture was used and evaluated in the context of the SemEval 2020 challenge (task 9), and our system got 72.7% on the F1 score.

0
0
下载
预览

Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many institutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.

0
0
下载
预览

Machines show an increasingly broad set of linguistic competencies, thanks to recent progress in Natural Language Processing (NLP). Many algorithms stem from past computational work in psychology, raising the question of whether they understand words as people do. In this paper, we compare how humans and machines represent the meaning of words. We argue that contemporary NLP systems are promising models of human word similarity, but they fall short in many other respects. Current models are too strongly linked to the text-based patterns in large corpora, and too weakly linked to the desires, goals, and beliefs that people use words in order to express. Word meanings must also be grounded in vision and action, and capable of flexible combinations, in ways that current systems are not. We pose concrete challenges for developing machines with a more human-like, conceptual basis for word meaning. We also discuss implications for cognitive science and NLP.

0
0
下载
预览

Nowadays event extraction systems mainly deal with a relatively small amount of information about temporal and modal qualifications of situations, primarily processing assertive sentences in the past tense. However, systems with a wider coverage of tense, aspect and mood can provide better analyses and can be used in a wider range of text analysis applications. This thesis develops such a system for Turkish language. This is accomplished by extending Open Source Information Mining and Analysis (OPTIMA) research group's event extraction software, by implementing appropriate extensions in the semantic representation format, by adding a partial grammar which improves the TAM (Tense, Aspect and Mood) marker, adverb analysis and matching functions of ExPRESS, and by constructing an appropriate lexicon in the standard of CORLEONE. These extensions are based on iv the theory of anchoring relations (Tem\"urc\"u, 2007, 2011) which is a crosslinguistically applicable semantic framework for analyzing tense, aspect and mood related categories. The result is a system which can, in addition to extracting basic event structures, classify sentences given in news reports according to their temporal, modal and volitional/illocutionary values. Although the focus is on news reports of natural disasters, disease outbreaks and man-made disasters in Turkish language, the approach can be adapted to other languages, domains and genres. This event extraction and classification system, with further developments, can provide a basis for automated browsing systems for preventing environmental and humanitarian risk.

0
0
下载
预览

Deep Bidirectional Long Short-Term Memory (D-BLSTM) with a Connectionist Temporal Classification (CTC) output layer has been established as one of the state-of-the-art solutions for handwriting recognition. It is well known that the DBLSTM trained by using a CTC objective function will learn both local character image dependency for character modeling and long-range contextual dependency for implicit language modeling. In this paper, we study the effects of implicit and explicit language model information for DBLSTM-CTC based handwriting recognition by comparing the performance of using or without using an explicit language model in decoding. It is observed that even using one million lines of training sentences to train the DBLSTM, using an explicit language model is still helpful. To deal with such a large-scale training problem, a GPU-based training tool has been developed for CTC training of DBLSTM by using a mini-batch based epochwise Back Propagation Through Time (BPTT) algorithm.

0
0
下载
预览

Structured prediction requires manipulating a large number of combinatorial structures, e.g., dependency trees or alignments, either as latent or output variables. Recently, the SparseMAP method has been proposed as a differentiable, sparse alternative to maximum a posteriori (MAP) and marginal inference. SparseMAP returns a combination of a small number of structures, a desirable property in some downstream applications. However, SparseMAP requires a tractable MAP inference oracle. This excludes, e.g., loopy graphical models or factor graphs with logic constraints, which generally require approximate inference. In this paper, we introduce LP-SparseMAP, an extension of SparseMAP that addresses this limitation via a local polytope relaxation. LP-SparseMAP uses the flexible and powerful domain specific language of factor graphs for defining and backpropagating through arbitrary hidden structure, supporting coarse decompositions, hard logic constraints, and higher-order correlations. We derive the forward and backward algorithms needed for using LP-SparseMAP as a hidden or output layer. Experiments in three structured prediction tasks show benefits compared to SparseMAP and Structured SVM.

0
0
下载
预览

Semantic Question Answering (QA) is a crucial technology to facilitate intuitive user access to semantic information stored in knowledge graphs. Whereas most of the existing QA systems and datasets focus on entity-centric questions, very little is known about these systems' performance in the context of events. As new event-centric knowledge graphs emerge, datasets for such questions gain importance. In this paper, we present the Event-QA dataset for answering event-centric questions over knowledge graphs. Event-QA contains 1000 semantic queries and the corresponding English, German and Portuguese verbalizations for EventKG - an event-centric knowledge graph with more than 970 thousand events.

0
0
下载
预览

As the world is becoming more dependent on the internet for information exchange, some overzealous journalists, hackers, bloggers, individuals and organizations tend to abuse the gift of free information environment by polluting it with fake news, disinformation and pretentious content for their own agenda. Hence, there is the need to address the issue of fake news and disinformation with utmost seriousness. This paper proposes a methodology for fake news detection and reporting through a constraint mechanism that utilizes the combined weighted accuracies of four machine learning algorithms.

0
0
下载
预览

Training medical image analysis models requires large amounts of expertly annotated data which is time-consuming and expensive to obtain. Images are often accompanied by free-text radiology reports which are a rich source of information. In this paper, we tackle the automated extraction of structured labels from head CT reports for imaging of suspected stroke patients, using deep learning. Firstly, we propose a set of 31 labels which correspond to radiographic findings (e.g. hyperdensity) and clinical impressions (e.g. haemorrhage) related to neurological abnormalities. Secondly, inspired by previous work, we extend existing state-of-the-art neural network models with a label-dependent attention mechanism. Using this mechanism and simple synthetic data augmentation, we are able to robustly extract many labels with a single model, classified according to the radiologist's reporting (positive, uncertain, negative). This approach can be used in further research to effectively extract many labels from medical text.

0
0
下载
预览

Simultaneous machine translation consists in starting output generation before the entire input sequence is available. Wait-k decoders offer a simple but efficient approach for this problem. They first read k source tokens, after which they alternate between producing a target token and reading another source token. We investigate the behavior of wait-k decoding in low resource settings for spoken corpora using IWSLT datasets. We improve training of these models using unidirectional encoders, and training across multiple values of k. Experiments with Transformer and 2D-convolutional architectures show that our wait-k models generalize well across a wide range of latency levels. We also show that the 2D-convolution architecture is competitive with Transformers for simultaneous translation of spoken language.

0
0
下载
预览
Top