小钱钱来啦!快上车!

2017 年 11 月 27 日 转化医学网 Juka

点击上方“转化医学网”订阅我们!

干货 | 靠谱 | 实用  

小钱钱来啦!


不废话,翻译文章如下:

文章标题:

New study points the way to therapy for rare cancer that targets the young


After years of rigorous research, a team of scientists has identified the genetic engine that drives a rare form of liver cancer. The findings offer prime targets for drugs to treat the usually lethal disease, fibrolamellar hepatocellular carcinoma (FL-HCC), which mainly strikes adolescents and young adults.


Sanford Simon, who conducted the research as head of The Rockefeller University's Laboratory of Cellular Biophysics, describes the culprit as a "chimeric gene," a mutation created when two genes fuse together. These genes normally sit far apart from each other, separated by some 400,000 base pairs, the building blocks of DNA that combine to form genes.


The chimeric gene, which Simon's lab first characterized three years ago, has been found in each of the hundreds of FL-HCC patients tested for the mutation.


A disease mechanism revealed


Having confirmed the chimeric gene as a hallmark of the disease, Simon set out to explore if and how it may cause these malignant tumors. He worked with Scott Lowe, a cancer geneticist at the Memorial Sloan Kettering Cancer Center, to develop a mouse model of FL-HCC.


In work published this week in the Proceedings of the National Academy of Sciences, the scientists used CRISPR gene editing, a highly precise tool for manipulating DNA, to generate mice that carry the 400,000 base-pair deletion and produce the chimeric gene. Edward Kastenhuber, a graduate student in Lowe's lab, found that these mice develop liver tumors that mimic the biology of the tumors found in humans with FL-HCC, suggesting that the deletion is in itself sufficient to cause the cancer—other alterations are not necessary for tumors to grow.

However, this experiment left open the question of precisely how the deletion spurs cancer: by eliminating genes that normally would suppress the growth of tumors, or by introducing the chimeric gene. Another experiment, in which mice with the fused gene but no deletion in the genome developed tumors, proved that it's the mutation, not the missing DNA as such, that causes the disease.


With the chimeric gene firmly established as the driver of the disease, and its cellular mechanisms defined, Simon and his team—including Gadi Lalazar, of Rockefeller's Clinical Scholars Program, and graduate student David Requena—are now working to identify potential targets for drugs to treat the disease.


New concepts for therapy


Among these drug targets is a protein produced from the fused gene that belongs to a family of enzymes called kinases. These enzymes are often mutated in cancers. "In fact," Simon explains, "some of the most successful cancer therapies available, including Gleevec, act by targeting specific kinases."


The researchers showed that disruption of the fused gene's kinase activity impaired the formation of tumors in mice—a finding that has strengthened their confidence that agents aimed at targeting this activity or its consequences might be effective against FL-HCC.


The team is also studying the effects of targeting a number of cellular signaling systems that have previously been implicated in other cancers, and that speed tumor growth when they become overactive in FL-HCC patients. And they will be using their new mouse model as a system to test the effectiveness of new therapies prior to initiating clinical trials in patients.


Simon first became interested in FL-HCC nine years ago, when his 12-year-old daughter Elana was diagnosed with the disease. (Now 21, Elana is a senior at Harvard, and a lead author on earlier reports characterizing the genomics of the disease.) He continues to embrace the challenge the cancer presents and attributes the latest breakthroughs to an "incredible perfect storm" of advances in all of the sciences, thanks to decades of public investment in basic research.


"Here's a cancer where, five years ago, we didn't know if it was one disease or many diseases lumped together," Simon adds. "We didn't know if it was inherited or if it was due to a sporadic mutation. And now we know exactly what the driver is and how it works, and we can start designing therapeutics."



文章被录用,我们的医学编辑会立即联系您的,所以在投稿的时候要留下联系方式哟!


文章被录用,我们的医学编辑会立即联系您的,所以在投稿的时候要留下联系方式哟!


文章被录用,我们的医学编辑会立即联系您的,所以在投稿的时候要留下联系方式哟!

投稿方式和奖励,戳我哟!


END


登录查看更多
0

相关内容

软件工程评估(Evaluation and Assessment in Software Engineering,EASE)会议是一个国际领先的会议场所,学术界和实践者可以在此展示和讨论他们对基于证据的软件工程的研究及其对软件实践的影响。第23届EASE将于2019年4月在丹麦哥本哈根举行,由哥本哈根IT大学主办。EASE 2019欢迎向不同领域提交高质量的研究报告:完整的研究论文、短篇论文和手工艺品、新兴成果和愿景、行业轨迹、博士研讨会、海报。官网链接:https://ease2019.org/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
《科学》(20190426出版)一周论文导读
科学网
5+阅读 · 2019年4月27日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
《科学》(20181012出版)一周论文导读
科学网
4+阅读 · 2018年10月14日
【资源】15个在线机器学习课程和教程
专知
8+阅读 · 2017年12月22日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
《科学》(20190426出版)一周论文导读
科学网
5+阅读 · 2019年4月27日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
《科学》(20181012出版)一周论文导读
科学网
4+阅读 · 2018年10月14日
【资源】15个在线机器学习课程和教程
专知
8+阅读 · 2017年12月22日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员