最新推荐 | 清华NLP图神经网络GNN论文分门别类,16大应用200+篇论文

2019 年 8 月 11 日 THU数据派

来源:专知


本文 6200字 ,建议阅读 5分钟
本文总结了清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai同学对 GNN 相关的综述论文、模型与应用。


[ 导读 ]图神经网络研究成为当前深度学习领域的热点。最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai同学对 GNN 相关的综述论文、模型与应用进行了综述,并发布在 GitHub 上。16大应用包含物理、知识图谱等最新论文整理推荐。


GitHub 链接:
https://github.com/thunlp/GNNPapers


目录


1. Survey
2. Models
 2.1 Basic Models  2.2 Graph Types
 2.3 Pooling Methods  2.4 Analysis
2.5 Efficiency
3. Applications
 3.1 Physics  3.2 Chemistry and Biology
 3.3 Knowledge Graph  3.4 Recommender Systems
 3.5 Computer Vision  3.6 Natural Language Processing
 3.7 Generation  3.8 Combinatorial Optimization
 3.9 Adversarial Attack  3.10 Graph Clustering
 3.11 Graph Classification  3.12 Reinforcement Learning
 3.13 Traffic Network

 3.14 Few-shot and

         Zero-shot Learning

 3.15 Program Representation

3.16 Social Network


综述论文

  • Graph Neural Networks: A Review of Methods and Applications. arxiv 2018. paper


Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun.


  • A Comprehensive Survey on Graph Neural Networks. arxiv 2019. paper

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu.


  • Deep Learning on Graphs: A Survey. arxiv 2018. paper


Ziwei Zhang, Peng Cui, Wenwu Zhu.

  • Relational Inductive Biases, Deep Learning, and Graph Networks. arxiv 2018. paper


Battaglia, Peter W and Hamrick, Jessica B and Bapst, Victor and Sanchez-Gonzalez, Alvaro and Zambaldi, Vinicius and Malinowski, Mateusz and Tacchetti, Andrea and Raposo, David and Santoro, Adam and Faulkner, Ryan and others.


  • Geometric Deep Learning: Going beyond Euclidean data. IEEE SPM 2017. paper


Bronstein, Michael M and Bruna, Joan and LeCun, Yann and Szlam, Arthur and Vandergheynst, Pierre.

  • Computational Capabilities of Graph Neural Networks. IEEE TNN 2009. paper


Scarselli, Franco and Gori, Marco and Tsoi, Ah Chung and Hagenbuchner, Markus and Monfardini, Gabriele.

  • Neural Message Passing for Quantum Chemistry. ICML 2017. paper


Gilmer, Justin and Schoenholz, Samuel S and Riley, Patrick F and Vinyals, Oriol and Dahl, George E.

  • Non-local Neural Networks. CVPR 2018. paper


Wang, Xiaolong and Girshick, Ross and Gupta, Abhinav and He, Kaiming.


  • The Graph Neural Network Model. IEEE TNN 2009. paper


Scarselli, Franco and Gori, Marco and Tsoi, Ah Chung and Hagenbuchner, Markus and Monfardini, Gabriele.


模型


基本模型


  • Graphical-Based Learning Environments for Pattern Recognition. SSPR/SPR 2004. paper


Franco Scarselli, Ah Chung Tsoi, Marco Gori, Markus Hagenbuchner.


  • A new model for learning in graph domains. IJCNN 2005. paper


Marco Gori, Gabriele Monfardini, Franco Scarselli.


  • Graph Neural Networks for Ranking Web Pages. WI 2005. paper


Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner, Ah Chung Tsoi, Marco Maggini.


  • Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014. paper


Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun.

  • Deep Convolutional Networks on Graph-Structured Data. arxiv 2015. paper


Mikael Henaff, Joan Bruna, Yann LeCun.

  • Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS 2016. paper


Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst.


  • Diffusion-Convolutional Neural Networks. NIPS 2016. paper


James Atwood, Don Towsley.

  • Gated Graph Sequence Neural Networks. ICLR 2016. paper


Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel.

  • Learning Convolutional Neural Networks for Graphs. ICML 2016. paper


Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov.


  • Semantic Object Parsing with Graph LSTM. ECCV 2016. paper


Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, Shuicheng Yan.

  • Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017. paper


Thomas N. Kipf, Max Welling.


  • Inductive Representation Learning on Large Graphs. NIPS 2017. paper


William L. Hamilton, Rex Ying, Jure Leskovec.


  • Geometric deep learning on graphs and manifolds using mixture model cnns. CVPR 2017. paper


Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, Michael M. Bronstein.


  • Graph Attention Networks. ICLR 2018. paper


Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio.


  • Covariant Compositional Networks For Learning Graphs. ICLR 2018. paper


Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, Shubhendu Trivedi.

  • Graph Partition Neural Networks for Semi-Supervised Classification. ICLR 2018. paper


Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel Urtasun, Richard Zemel.


  • Inference in Probabilistic Graphical Models by Graph Neural Networks. ICLR Workshop 2018. paper


KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard Zemel, Xaq Pitkow.

  • Structure-Aware Convolutional Neural Networks. NeurIPS 2018. paper


Jianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, Chunhong Pan.

  • Bayesian Semi-supervised Learning with Graph Gaussian Processes. NeurIPS 2018. paper


Yin Cheng Ng, Nicolò Colombo, Ricardo Silva.

  • Adaptive Graph Convolutional Neural Networks. AAAI 2018. paper


Ruoyu Li, Sheng Wang, Feiyun Zhu, Junzhou Huang.


图类型


  • DyRep: Learning Representations over Dynamic Graphs. ICLR 2019. paper


Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha.

  • Hypergraph Neural Networks. AAAI 2019. paper


Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, Yue Gao.


  • Heterogeneous Graph Attention Network. WWW 2019. paper


Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, P. Yu, Yanfang Ye.

  • Representation Learning for Attributed Multiplex Heterogeneous Network. KDD 2019. paper

Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, Jie Tang.

  • ActiveHNE: Active Heterogeneous Network Embedding. IJCAI 2019. paper


Xia Chen, Guoxian Yu, Jun Wang, Carlotta Domeniconi, Zhao Li, Xiangliang Zhang.


  • GCN-LASE: Towards Adequately Incorporating Link Attributes in Graph Convolutional Networks. IJCAI 2019. paper


Ziyao Li, Liang Zhang, Guojie Song.

  • Exploiting Edge Features in Graph Neural Networks. CVPR 2019. paper

Liyu Gong, Qiang Cheng.


池化方法


  • Hierarchical Graph Representation Learning with Differentiable Pooling. NeurIPS 2018. paper


Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, Jure Leskovec.


  • Self-Attention Graph Pooling. ICML 2019. paper


Junhyun Lee, Inyeop Lee, Jaewoo Kang.


  • Graph U-Nets. ICML 2019. paper


Hongyang Gao, Shuiwang Ji.

  • Graph Convolutional Networks with EigenPooling. KDD 2019. paper


Yao Ma, Suhang Wang, Charu C. Aggarwal, Jiliang Tang.

  • Relational Pooling for Graph Representations. ICML 2019. paper


Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, Bruno Ribeiro.


分析


  • A Comparison between Recursive Neural Networks and Graph Neural Networks. IJCNN 2006. paper


Vincenzo Di Massa, Gabriele Monfardini, Lorenzo Sarti, Franco Scarselli, Marco Maggini, Marco Gori.


  • Neural networks for relational learning: an experimental comparison. Machine Learning 2011. paper


Werner Uwents, Gabriele Monfardini, Hendrik Blockeel, Marco Gori, Franco Scarselli.

  • Mean-field theory of graph neural networks in graph partitioning. NeurIPS 2018. paper


Tatsuro Kawamoto, Masashi Tsubaki, Tomoyuki Obuchi.


  • Representation Learning on Graphs with Jumping Knowledge Networks. ICML 2018. paper


Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka.


  • Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. AAAI 2018. paper


Qimai Li, Zhichao Han, Xiao-Ming Wu.


  • How Powerful are Graph Neural Networks? ICLR 2019. paper


Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka.

  • Stability and Generalization of Graph Convolutional Neural Networks. KDD 2019. paper


Saurabh Verma, Zhi-Li Zhang.

  • Simplifying Graph Convolutional Networks. ICML 2019. paper


Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, Kilian Q. Weinberger.


  • Explainability Methods for Graph Convolutional Neural Networks. CVPR 2019. paper


Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, Heiko Hoffmann.

  • Can GCNs Go as Deep as CNNs? ICCV 2019. paper


Guohao Li, Matthias Müller, Ali Thabet, Bernard Ghanem.

  • Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. AAAI 2019. paper


Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, Martin Grohe.


效率


  • Stochastic Training of Graph Convolutional Networks with Variance Reduction. ICML 2018. paper


Jianfei Chen, Jun Zhu, Le Song.

  • FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. ICLR 2018. paper


Jie Chen, Tengfei Ma, Cao Xiao.

  • Adaptive Sampling Towards Fast Graph Representation Learning. NeurIPS 2018. paper


Wenbing Huang, Tong Zhang, Yu Rong, Junzhou Huang.

  • Large-Scale Learnable Graph Convolutional Networks. KDD 2018. paper


Hongyang Gao, Zhengyang Wang, Shuiwang Ji.

  • Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. KDD 2019. paper


Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh.

  • A Degeneracy Framework for Scalable Graph Autoencoders. IJCAI 2019. paper


Guillaume Salha, Romain Hennequin, Viet Anh Tran, Michalis Vazirgiannis.


应用


物理


  • Discovering objects and their relations from entangled scene representations. ICLR Workshop 2017. paper


David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, Peter Battaglia.


  • A simple neural network module for relational reasoning. NIPS 2017. paper


Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap.


  • Interaction Networks for Learning about Objects, Relations and Physics. NIPS 2016. paper


Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu.
  • Visual Interaction Networks: Learning a Physics Simulator from Video. NIPS 2017. paper


Nicholas Watters, Andrea Tacchetti, Théophane Weber, Razvan Pascanu, Peter Battaglia, Daniel Zoran.


  • Graph networks as learnable physics engines for inference and control. ICML 2018. paper


Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, Peter Battaglia.

  • Learning Multiagent Communication with Backpropagation. NIPS 2016. paper


Sainbayar Sukhbaatar, Arthur Szlam, Rob Fergus.

  • VAIN: Attentional Multi-agent Predictive Modeling. NIPS 2017 paper


Yedid Hoshen.

  • Neural Relational Inference for Interacting Systems. ICML 2018. paper


Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard Zemel.

  • Graph Element Networks: adaptive, structured computation and memory. ICML 2019. paper


Ferran Alet, Adarsh K. Jeewajee, Maria Bauza, Alberto Rodriguez, Tomas Lozano-Perez, Leslie Pack Kaelbling.


化学生物


  • Convolutional networks on graphs for learning molecular fingerprints. NIPS 2015. paper


David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams.


  • Molecular Graph Convolutions: Moving Beyond Fingerprints. Journal of computer-aided molecular design 2016. paper


Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, Patrick Riley.

  • Protein Interface Prediction using Graph Convolutional Networks. NIPS 2017. paper


Alex Fout, Jonathon Byrd, Basir Shariat, Asa Ben-Hur.

  • Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification. IJCAI 2018. paper


Sungmin Rhee, Seokjun Seo, Sun Kim.

  • Modeling polypharmacy side effects with graph convolutional networks. ISMB 2018. paper


Marinka Zitnik, Monica Agrawal, Jure Leskovec.

  • MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions. IJCAI 2019. paper


Nuo Xu, Pinghui Wang, Long Chen, Jing Tao, Junzhou Zhao.

  • Pre-training of Graph Augmented Transformers for Medication Recommendation. IJCAI 2019. paper


Junyuan Shang, Tengfei Ma, Cao Xiao, Jimeng Sun.

  • GAMENet: Graph Augmented MEmory Networks for Recommending Medication Combination. AAAI 2019. paper


Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, Jimeng Sun.

  • AffinityNet: semi-supervised few-shot learning for disease type prediction. AAAI 2019. paper


Tianle Ma, Aidong Zhang.

  • Graph Transformation Policy Network for Chemical Reaction Prediction. KDD 2019. paper


Kien Do, Truyen Tran, Svetha Venkatesh.

  • Functional Transparency for Structured Data: a Game-Theoretic Approach. ICML 2019. paper


Guang-He Lee, Wengong Jin, David Alvarez-Melis, Tommi S. Jaakkola.

  • Learning Multimodal Graph-to-Graph Translation for Molecular Optimization. ICLR 2019. paper


Wengong Jin, Kevin Yang, Regina Barzilay, Tommi Jaakkola.

  • A Generative Model For Electron Paths. ICLR 2019. paper


John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, José Miguel Hernández-Lobato.


知识图谱


  • Modeling Relational Data with Graph Convolutional Networks. ESWC 2018. paper


Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling.


  • Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. EMNLP 2018. paper


Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang.


  • Representation learning for visual-relational knowledge graphs. arxiv 2017. paper


Daniel Oñoro-Rubio, Mathias Niepert, Alberto García-Durán, Roberto González, Roberto J. López-Sastre.


  • End-to-end Structure-Aware Convolutional Networks for Knowledge Base Completion. AAAI 2019. paper


Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, Bowen Zhou.


  • Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Approach. IJCAI 2017. paper


Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, Yuji Matsumoto.


  • Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding. AAAI 2019. paper


Peifeng Wang, Jialong Han, Chenliang Li, Rong Pan.


  • Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams. CVPR 2018. paper


Haoyu Wang, Defu Lian, Yong Ge.


  • Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks. KDD 2019. paper


Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, Christos Faloutsos.


  • OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. KDD 2019. paper


Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang, Bin Shao, Rui Li, Kuansan Wang.


  • Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs. ACL 2019. paper


Deepak Nathani, Jatin Chauhan, Charu Sharma, Manohar Kaul.


  • Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network. ACL 2019. paper


Kun Xu, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, Dong Yu.


推荐系统


  • Graph Convolutional Neural Networks for Web-Scale Recommender Systems. KDD 2018. paper


Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec.


  • Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks. NIPS 2017. paper


Federico Monti, Michael M. Bronstein, Xavier Bresson.


  • Graph Convolutional Matrix Completion. 2017. paper


Rianne van den Berg, Thomas N. Kipf, Max Welling.


  • STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems. IJCAI 2019. paper


Jiani Zhang, Xingjian Shi, Shenglin Zhao, Irwin King.


  • Binarized Collaborative Filtering with Distilling Graph Convolutional Networks. IJCAI 2019. paper


Haoyu Wang, Defu Lian, Yong Ge.

  • Session-based Recommendation with Graph Neural Networks. AAAI 2019. paper


Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan.

  • Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks. AAAI 2019. paper


Jin Shang, Mingxuan Sun.

  • Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. KDD 2019. paper


Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, Zhongyuan Wang.


  • Exact-K Recommendation via Maximal Clique Optimization. KDD 2019. paper


Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, Kenny Q. Zhu.

  • KGAT: Knowledge Graph Attention Network for Recommendation. KDD 2019. paper


Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, Tat-Seng Chua.

  • Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019. paper


Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, Minyi Guo.

  • Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. WWW 2019. paper


Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, Guihai Chen.

  • Graph Neural Networks for Social Recommendation. WWW 2019. paper


Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin


计算机视觉

  • Graph Neural Networks for Object Localization. ECAI 2006. paper


Gabriele Monfardini, Vincenzo Di Massa, Franco Scarselli, Marco Gori.

  • Learning Human-Object Interactions by Graph Parsing Neural Networks. ECCV 2018. paper


Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, Song-Chun Zhu.

  • Learning Conditioned Graph Structures for Interpretable Visual Question Answering. NeurIPS 2018. paper


Will Norcliffe-Brown, Efstathios Vafeias, Sarah Parisot.

  • Symbolic Graph Reasoning Meets Convolutions. NeurIPS 2018. paper


Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, Eric P. Xing.


  • Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering. NeurIPS 2018. paper


Medhini Narasimhan, Svetlana Lazebnik, Alexander Schwing.


  • Structural-RNN: Deep Learning on Spatio-Temporal Graphs. CVPR 2016. paper


Ashesh Jain, Amir R. Zamir, Silvio Savarese, Ashutosh Saxena.

  • Relation Networks for Object Detection. CVPR 2018. paper


Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, Yichen Wei.

  • Learning Region features for Object Detection. ECCV 2018. paper


Jiayuan Gu, Han Hu, Liwei Wang, Yichen Wei, Jifeng Dai.

  • The More You Know: Using Knowledge Graphs for Image Classification. CVPR 2017. paper


Kenneth Marino, Ruslan Salakhutdinov, Abhinav Gupta.

  • Understanding Kin Relationships in a Photo. TMM 2012. paper


Siyu Xia, Ming Shao, Jiebo Luo, Yun Fu.

  • Graph-Structured Representations for Visual Question Answering. CVPR 2017. paper


Damien Teney, Lingqiao Liu, Anton van den Hengel.


  • Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018. paper


Sijie Yan, Yuanjun Xiong, Dahua Lin.


  • Dynamic Graph CNN for Learning on Point Clouds. CVPR 2018. paper


Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon.


  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2018. paper


Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas.


  • 3D Graph Neural Networks for RGBD Semantic Segmentation. CVPR 2017. paper


Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, Raquel Urtasun.


  • Iterative Visual Reasoning Beyond Convolutions. CVPR 2018. paper


Xinlei Chen, Li-Jia Li, Li Fei-Fei, Abhinav Gupta.


  • Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. CVPR 2017. paper


Martin Simonovsky, Nikos Komodakis.


  • Situation Recognition with Graph Neural Networks. ICCV 2017. paper


Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, Sanja Fidler.


  • Deep Reasoning with Knowledge Graph for Social Relationship Understanding. IJCAI 2018. paper


Zhouxia Wang, Tianshui Chen, Jimmy Ren, Weihao Yu, Hui Cheng, Liang Lin.


  • I Know the Relationships: Zero-Shot Action Recognition via Two-Stream Graph Convolutional Networks and Knowledge Graphs. AAAI 2019. paper


Junyu Gao, Tianzhu Zhang, Changsheng Xu.


自然语言处理


  • Conversation Modeling on Reddit using a Graph-Structured LSTM. TACL 2018. paper


Vicky Zayats, Mari Ostendorf.


  • Learning Graphical State Transitions. ICLR 2017. paper


Daniel D. Johnson.


  • Multiple Events Extraction via Attention-based Graph Information Aggregation. EMNLP 2018. paper


Xiao Liu, Zhunchen Luo, Heyan Huang.


  • Recurrent Relational Networks. NeurIPS 2018. paper


Rasmus Palm, Ulrich Paquet, Ole Winther.


  • Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015. paper


Kai Sheng Tai, Richard Socher, Christopher D. Manning.


  • Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. EMNLP 2017. paper


Diego Marcheggiani, Ivan Titov.


  • Graph Convolutional Networks with Argument-Aware Pooling for Event Detection. AAAI 2018. paper


Thien Huu Nguyen, Ralph Grishman.


  • Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks. NAACL 2018. paper


Diego Marcheggiani, Joost Bastings, Ivan Titov.


  • Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks. 2018. paper


Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, Daniel Gildea.


  • Graph Convolution over Pruned Dependency Trees Improves Relation Extraction. EMNLP 2018. paper


Yuhao Zhang, Peng Qi, Christopher D. Manning.


  • N-ary relation extraction using graph state LSTM. EMNLP 18. paper


Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea.


  • A Graph-to-Sequence Model for AMR-to-Text Generation. ACL 2018. paper


Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea.


  • Graph-to-Sequence Learning using Gated Graph Neural Networks. ACL 2018. paper


Daniel Beck, Gholamreza Haffari, Trevor Cohn.


  • Cross-Sentence N-ary Relation Extraction with Graph LSTMs. TACL. paper


Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, Wen-tau Yih.


  • Sentence-State LSTM for Text Representation. ACL 2018. paper


Yue Zhang, Qi Liu, Linfeng Song.


  • End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. ACL 2016. paper


Makoto Miwa, Mohit Bansal.


  • Graph Convolutional Encoders for Syntax-aware Neural Machine Translation. EMNLP 2017. paper


Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, Khalil Sima'an.


  • Semi-supervised User Geolocation via Graph Convolutional Networks. ACL 2018. paper


Afshin Rahimi, Trevor Cohn, Timothy Baldwin.


  • Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering. COLING 2018. paper


Daniil Sorokin, Iryna Gurevych.


  • Graph Convolutional Networks for Text Classification. AAAI 2019. paper


Liang Yao, Chengsheng Mao, Yuan Luo.


生成


  • Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. NeurIPS 2018. paper


Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec.


  • Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders. NeurIPS 2018. paper


Tengfei Ma, Jie Chen, Cao Xiao.


  • Learning deep generative models of graphs. ICLR Workshop 2018. paper


Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter Battaglia.


  • MolGAN: An implicit generative model for small molecular graphs. 2018. paper


Nicola De Cao, Thomas Kipf.


  • GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. ICML 2018. paper


Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec.


  • NetGAN: Generating Graphs via Random Walks. ICML 2018. paper


Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, Stephan Günnemann.


  • Graphite: Iterative Generative Modeling of Graphs. ICML 2019. paper


  • Aditya Grover, Aaron Zweig, Stefano Ermon.Generative Code Modeling with Graphs. ICLR 2019. paper


Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, Oleksandr Polozov.


组合优化


  • Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search. NeurIPS 2018. paper


Zhuwen Li, Qifeng Chen, Vladlen Koltun.


  • Learning a SAT Solver from Single-Bit Supervision. ICLR 2019. paper


Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, David L. Dill.


  • A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks. PADL 2017. paper


Alex Nowak, Soledad Villar, Afonso S. Bandeira, Joan Bruna.


  • Attention Solves Your TSP, Approximately. 2018. paper


Wouter Kool, Herke van Hoof, Max Welling.


  • Learning to Solve NP-Complete Problems - A Graph Neural Network for Decision TSP. AAAI 2019. paper


Marcelo O. R. Prates, Pedro H. C. Avelar, Henrique Lemos, Luis Lamb, Moshe Vardi.


  • DAG-GNN: DAG Structure Learning with Graph Neural Networks. ICML 2019. paper


Yue Yu, Jie Chen, Tian Gao, Mo Yu.


对抗攻击


  • Adversarial Attacks on Neural Networks for Graph Data. KDD 2018. paper


Daniel Zügner, Amir Akbarnejad, Stephan Günnemann.


  • Adversarial Attack on Graph Structured Data. ICML 2018. paper


Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, Le Song.


  • Adversarial Examples on Graph Data: Deep Insights into Attack and Defense. IJCAI 2019. paper


Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, Liming Zhu.


  • Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. IJCAI 2019. paper


Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin.


  • Robust Graph Convolutional Networks Against Adversarial Attacks. KDD 2019. paper


Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu.


  • Certifiable Robustness and Robust Training for Graph Convolutional Networks. KDD 2019. paper


Daniel Zügner, Stephan Günnemann.


  • Adversarial Attacks on Node Embeddings via Graph Poisoning. ICML 2019. paper


Aleksandar Bojchevski, Stephan Günnemann.


  • Adversarial Attacks on Graph Neural Networks via Meta Learning. ICLR 2019. paper


Daniel Zügner, Stephan Günnemann.


  • PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks. ICLR 2019. paper


Jan Svoboda, Jonathan Masci, Federico Monti, Michael Bronstein, Leonidas Guibas.


Graph Clustering 图聚类


  • Attributed Graph Clustering: A Deep Attentional Embedding Approach. IJCAI 2019. paper


Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Chengqi Zhang.

  • Attributed Graph Clustering via Adaptive Graph Convolution. IJCAI 2019. paper


Xiaotong Zhang, Han Liu, Qimai Li, Xiao-Ming Wu.

Graph Classification 图分类

  • Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing. ICML 2018. paper


Davide Bacciu, Federico Errica, Alessio Micheli.

  • Semi-Supervised Graph Classification: A Hierarchical Graph Perspective. WWW 2019. paper


Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, Junzhou Huang.

  • DDGK: Learning Graph Representations for Deep Divergence Graph Kernels. WWW 2019. paper


Rami Al-Rfou, Dustin Zelle, Bryan Perozzi.

  • Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity. IJCAI 2019. paper


Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun, Wei Wang.

Reinforcement Learning 强化学习

  • NerveNet: Learning Structured Policy with Graph Neural Networks. ICLR 2018. paper


Tingwu Wang, Renjie Liao, Jimmy Ba, Sanja Fidler.


  • Structured Dialogue Policy with Graph Neural Networks. ICCL 2018. paper


Lu Chen, Bowen Tan, Sishan Long, Kai Yu.


  • Relational inductive bias for physical construction in humans and machines. CogSci 2018. paper


Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee, Joshua B. Tenenbaum, Peter W. Battaglia.

  • Relational Deep Reinforcement Learning. arxiv 2018. paper


Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, Peter Battaglia.
  • Playing Text-Adventure Games with Graph-Based Deep Reinforcement Learning. NAACL 2019. paper

Prithviraj Ammanabrolu, Mark O. Riedl.

Traffic Network 交通网络

  • Spatiotemporal Multi‐Graph Convolution Network for Ride-hailing Demand Forecasting. AAAI 2019. paper


Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, Yan Liu.

  • Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. AAAI 2019. paper


Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, Huaiyu Wan.

  • Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. arxiv 2018. paper


Zhiyong Cui, Kristian Henrickson, Ruimin Ke, Yinhai Wang.

  • Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. IJCAI 2018. paper


Bing Yu, Haoteng Yin, Zhanxing Zhu.

  • Origin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand Modeling. KDD 2019. paper

Yuandong Wang, Hongzhi Yin, Hongxu Chen, Tianyu Wo, Jie Xu, Kai Zheng.

  • Predicting Path Failure In Time-Evolving Graphs. KDD 2019. paper


Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, Lujia Pan.

  • Stochastic Weight Completion for Road Networks using Graph Convolutional Networks. ICDE 2019. paper


Jilin Hu, Chenjuan Guo, Bin Yang, Christian S. Jensen.

STG2Seq: Spatial-temporal Graph to Sequence Model for Multi-step 
  • Passenger Demand Forecasting. IJCAI 2019. paper

Lei Bai, Lina Yao, Salil.S Kanhere, Xianzhi Wang, Quan.Z Sheng.


  • Graph WaveNet for Deep Spatial-Temporal Graph Modeling. IJCAI 2019. paper


Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Chengqi Zhang.


Few-shot and Zero-shot Learning 小样本学习


  • Few-Shot Learning with Graph Neural Networks. ICLR 2018. paper


Victor Garcia, Joan Bruna.
  • Prototype Propagation Networks (PPN) for Weakly-supervised Few-shot Learning on Category Graph. IJCAI 2019. paper

Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Lina Yao, Chengqi Zhang.

  • Edge-labeling Graph Neural Network for Few-shot Learning. CVPR 2019. paper


Jongmin Kim, Taesup Kim, Sungwoong Kim, Chang D. Yoo.

  • Generating Classification Weights with GNN Denoising Autoencoders for Few-Shot Learning. CVPR 2019. paper


Spyros Gidaris, Nikos Komodakis.

  • Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs. CVPR 2018. paper


Xiaolong Wang, Yufei Ye, Abhinav Gupta.


  • Rethinking Knowledge Graph Propagation for Zero-Shot Learning. CVPR 2019. paper


Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang, Eric P. Xing.


  • Multi-Label Zero-Shot Learning with Structured Knowledge Graphs. CVPR 2018. paper


Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, Yu-Chiang Frank Wang.


Reinforcement Learning 强化学习

  • Relational inductive bias for physical construction in humans and machines. CogSci 2018. paper


Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee, Joshua B. Tenenbaum, Peter W. Battaglia.

  • Relational Deep Reinforcement Learning. arxiv 2018. paper


Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, Peter Battaglia.


  • Action Schema Networks: Generalised Policies with Deep Learning. AAAI 2018. paper


Sam Toyer, Felipe Trevizan, Sylvie Thiébaux, Lexing Xie.

Program Representation 编程表示

  • Learning to Represent Programs with Graphs. ICLR 2018. paper


Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi.

  • Open Vocabulary Learning on Source Code with a Graph-Structured Cache. ICML 2019. paper


Milan Cvitkovic, Badal Singh, Anima Anandkumar

Social Network 社交网络

  • DeepInf: Social Influence Prediction with Deep Learning. KDD 2018. paper


J iezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, Jie Tang.

  • Characterizing and Forecasting User Engagement with In-app Action Graph: A Case Study of Snapchat. KDD 2019. paper

Yozen Liu, Xiaolin Shi, Lucas Pierce, Xiang Ren.

  • MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network.KDD 2019. paper


Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, Wen Su.


  • Is a Single Vector Enough? Exploring Node Polysemy for Network Embedding. KDD 2019. paper


Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, Xia Hu.
  • Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media.ACL 2019. paper

Chang Li, Dan Goldwasser.


  • Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks. IJCAI 2019. paper


Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai, Philip S. Yu.


-END-


编辑:王菁

校对:林亦霖


登录查看更多
18

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
小贴士
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
232+阅读 · 2019年7月9日
图神经网络(GNN)必读论文及最新进展跟踪
深度学习与NLP
19+阅读 · 2019年6月7日
Github项目推荐 | 知识图谱文献集合
AI研习社
18+阅读 · 2019年4月12日
Github项目推荐 | 图神经网络(GNN)相关资源大列表
清华NLP组图深度学习推荐,146篇必读GNN最新论文
中国人工智能学会
17+阅读 · 2018年12月29日
清华大学孙茂松组:图神经网络必读论文列表
机器之心
33+阅读 · 2018年12月27日
相关论文
Wenqi Fan,Yao Ma,Qing Li,Yuan He,Eric Zhao,Jiliang Tang,Dawei Yin
3+阅读 · 2019年11月23日
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Ruochi Zhang,Yuesong Zou,Jian Ma
3+阅读 · 2019年11月6日
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou,Ganqu Cui,Zhengyan Zhang,Cheng Yang,Zhiyuan Liu,Lifeng Wang,Changcheng Li,Maosong Sun
3+阅读 · 2019年7月10日
Hoang NT,Takanori Maehara
4+阅读 · 2019年5月23日
Xiang Wang,Xiangnan He,Meng Wang,Fuli Feng,Tat-Seng Chua
4+阅读 · 2019年5月20日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
4+阅读 · 2019年3月10日
Learning Graph Embedding with Adversarial Training Methods
Shirui Pan,Ruiqi Hu,Sai-fu Fung,Guodong Long,Jing Jiang,Chengqi Zhang
3+阅读 · 2019年1月4日
dynnode2vec: Scalable Dynamic Network Embedding
Sedigheh Mahdavi,Shima Khoshraftar,Aijun An
3+阅读 · 2018年12月6日
Aleksandar Bojchevski,Stephan Günnemann
4+阅读 · 2018年2月27日
Ruoyu Li,Sheng Wang,Feiyun Zhu,Junzhou Huang
4+阅读 · 2018年1月10日
Top