OpenAI丨深度强化学习关键论文列表

2018 年 11 月 10 日 中国人工智能学会
OpenAI丨深度强化学习关键论文列表

转自  专知 

【导读】本文列出了值得一读的深度强化学习论文,分为无模型强化学习、探索、迁移和多任务强化学习、层次结构、记忆、基于模型的强化学习、元强化学习、现实生活中的强化学习、模仿学习和强化学习中的经典理论等几个部分~ 对强化学习感兴趣的赶紧收藏吧~


Model-Free RL


Deep Q-Learning

[1] Playing Atari with Deep Reinforcement Learning, Mnih et al, 2013. Algorithm: DQN.

[2] Deep Recurrent Q-Learning for Partially Observable MDPs, Hausknecht and Stone, 2015. Algorithm: Deep Recurrent Q-Learning.

[3] Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, 2015. Algorithm: Dueling DQN.

[4] Deep Reinforcement Learning with Double Q-learning, Hasselt et al 2015.Algorithm: Double DQN.

[5] Prioritized Experience Replay, Schaul et al, 2015. Algorithm: Prioritized Experience Replay (PER).

[6] Rainbow: Combining Improvements in Deep Reinforcement Learning, Hessel et al, 2017. Algorithm: Rainbow DQN.


Policy Gradients

[7] Asynchronous Methods for Deep Reinforcement Learning, Mnih et al, 2016.Algorithm: A3C.

[8] Trust Region Policy Optimization, Schulman et al, 2015. Algorithm: TRPO.

[9] High-Dimensional Continuous Control Using Generalized Advantage Estimation, Schulman et al, 2015. Algorithm: GAE.

[10] Proximal Policy Optimization Algorithms, Schulman et al, 2017. Algorithm: PPO-Clip, PPO-Penalty.

[11] Emergence of Locomotion Behaviours in Rich Environments, Heess et al, 2017.Algorithm: PPO-Penalty.

[12] Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation, Wu et al, 2017. Algorithm: ACKTR.

[13] Sample Efficient Actor-Critic with Experience Replay, Wang et al, 2016. Algorithm: ACER.

[14] Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, Haarnoja et al, 2018. Algorithm: SAC.


Deterministic Policy Gradients

[15] Deterministic Policy Gradient Algorithms, Silver et al, 2014. Algorithm: DPG.

[16] Continuous Control With Deep Reinforcement Learning, Lillicrap et al, 2015.Algorithm: DDPG.

[17] Addressing Function Approximation Error in Actor-Critic Methods, Fujimoto et al, 2018. Algorithm: TD3.


Distributional RL

[18] A Distributional Perspective on Reinforcement Learning, Bellemare et al, 2017. Algorithm: C51.

[19] Distributional Reinforcement Learning with Quantile Regression, Dabney et al, 2017. Algorithm: QR-DQN.

[20] Implicit Quantile Networks for Distributional Reinforcement Learning, Dabney et al, 2018. Algorithm: IQN.

[21] Dopamine: A Research Framework for Deep Reinforcement Learning, Anonymous, 2018. Contribution: Introduces Dopamine, a code repository containing implementations of DQN, C51, IQN, and Rainbow. Code link.


Policy Gradients with Action-Dependent Baselines

[22] Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic, Gu et al, 2016.Algorithm: Q-Prop.

[23] Action-depedent Control Variates for Policy Optimization via Stein’s Identity, Liu et al, 2017. Algorithm: Stein Control Variates.

[24] The Mirage of Action-Dependent Baselines in Reinforcement Learning, Tucker et al, 2018. Contribution: interestingly, critiques and reevaluates claims from earlier papers (including Q-Prop and stein control variates) and finds important methodological errors in them.


 Path-Consistency Learning

[25] Bridging the Gap Between Value and Policy Based Reinforcement Learning, Nachum et al, 2017. Algorithm: PCL.

[26] Trust-PCL: An Off-Policy Trust Region Method for Continuous Control, Nachum et al, 2017. Algorithm: Trust-PCL.


 Other Directions for Combining Policy-Learning and Q-Learning

[27] Combining Policy Gradient and Q-learning, O’Donoghue et al, 2016. Algorithm: PGQL.

[28] The Reactor: A Fast and Sample-Efficient Actor-Critic Agent for Reinforcement Learning, Gruslys et al, 2017. Algorithm: Reactor.

[29] Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning, Gu et al, 2017. Algorithm: IPG.

[30] Equivalence Between Policy Gradients and Soft Q-Learning, Schulman et al, 2017. Contribution: Reveals a theoretical link between these two families of RL algorithms.


Evolutionary Algorithms

[31] Evolution Strategies as a Scalable Alternative to Reinforcement Learning, Salimans et al, 2017. Algorithm: ES.


Exploration


Intrinsic Motivation

[32] VIME: Variational Information Maximizing Exploration, Houthooft et al, 2016.Algorithm: VIME.

[33] Unifying Count-Based Exploration and Intrinsic Motivation, Bellemare et al, 2016.Algorithm: CTS-based Pseudocounts.

[34] Count-Based Exploration with Neural Density Models, Ostrovski et al, 2017.Algorithm: PixelCNN-based Pseudocounts.

[35] #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al, 2016. Algorithm: Hash-based Counts.

[36] EX2: Exploration with Exemplar Models for Deep Reinforcement Learning, Fu et al, 2017. Algorithm: EX2.

[37] Curiosity-driven Exploration by Self-supervised Prediction, Pathak et al, 2017.Algorithm: Intrinsic Curiosity Module (ICM).

[38] Large-Scale Study of Curiosity-Driven Learning, Burda et al, 2018. Contribution: Systematic analysis of how surprisal-based intrinsic motivation performs in a wide variety of environments.

[39] Exploration by Random Network Distillation, Burda et al, 2018. Algorithm: RND.


Unsupervised RL


[40] Variational Intrinsic Control, Gregor et al, 2016. Algorithm: VIC.

[41] Diversity is All You Need: Learning Skills without a Reward Function, Eysenbach et al, 2018. Algorithm: DIAYN.

[42] Variational Option Discovery Algorithms, Achiam et al, 2018. Algorithm: VALOR.


Transfer and Multitask RL


[43] Progressive Neural Networks, Rusu et al, 2016. Algorithm: Progressive Networks.

[44] Universal Value Function Approximators, Schaul et al, 2015. Algorithm: UVFA.

[45] Reinforcement Learning with Unsupervised Auxiliary Tasks, Jaderberg et al, 2016.Algorithm: UNREAL.

[46] The Intentional Unintentional Agent: Learning to Solve Many Continuous Control Tasks Simultaneously, Cabi et al, 2017. Algorithm: IU Agent.

[47] PathNet: Evolution Channels Gradient Descent in Super Neural Networks, Fernando et al, 2017. Algorithm: PathNet.

[48] Mutual Alignment Transfer Learning, Wulfmeier et al, 2017. Algorithm: MATL.

[49] Learning an Embedding Space for Transferable Robot Skills, Hausman et al, 2018.

[50] Hindsight Experience Replay, Andrychowicz et al, 2017. Algorithm: Hindsight Experience Replay (HER).


Hierarchy


[51] Strategic Attentive Writer for Learning Macro-Actions, Vezhnevets et al, 2016.Algorithm: STRAW.

[52] FeUdal Networks for Hierarchical Reinforcement Learning, Vezhnevets et al, 2017.Algorithm: Feudal Networks

[53] Data-Efficient Hierarchical Reinforcement Learning, Nachum et al, 2018. Algorithm: HIRO.


 Memory


[54] Model-Free Episodic Control, Blundell et al, 2016. Algorithm: MFEC.

[55] Neural Episodic Control, Pritzel et al, 2017. Algorithm: NEC.

[56] Neural Map: Structured Memory for Deep Reinforcement Learning, Parisotto and Salakhutdinov, 2017. Algorithm: Neural Map.

[57] Unsupervised Predictive Memory in a Goal-Directed Agent, Wayne et al, 2018.Algorithm: MERLIN.

[58] Relational Recurrent Neural Networks, Santoro et al, 2018. Algorithm: RMC.


Model-Based RL


Model is Learned

[59] Imagination-Augmented Agents for Deep Reinforcement Learning, Weber et al, 2017. Algorithm: I2A.

[60] Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning, Nagabandi et al, 2017. Algorithm: MBMF.

[61] Model-Based Value Estimation for Efficient Model-Free Reinforcement Learning, Feinberg et al, 2018. Algorithm: MBVE.

[62] Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion, Buckman et al, 2018. Algorithm: STEVE.

[63] Model-Ensemble Trust-Region Policy Optimization, Kurutach et al, 2018.Algorithm: ME-TRPO.

[64] Model-Based Reinforcement Learning via Meta-Policy Optimization, Clavera et al, 2018. Algorithm: MB-MPO.

[65] Recurrent World Models Facilitate Policy Evolution, Ha and Schmidhuber, 2018.


Model is Given

[66] Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, Silver et al, 2017. Algorithm: AlphaZero.

[67] Thinking Fast and Slow with Deep Learning and Tree Search, Anthony et al, 2017.Algorithm: ExIt.


Meta-RL


[68] RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning, Duan et al, 2016. Algorithm: RL^2.

[69] Learning to Reinforcement Learn, Wang et al, 2016.

[70] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, Finn et al, 2017. Algorithm: MAML.

[71] A Simple Neural Attentive Meta-Learner, Mishra et al, 2018. Algorithm: SNAIL.


Scaling RL

[72] Accelerated Methods for Deep Reinforcement Learning, Stooke and Abbeel, 2018. Contribution: Systematic analysis of parallelization in deep RL across algorithms.

[73] IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures, Espeholt et al, 2018. Algorithm: IMPALA.

[74] Distributed Prioritized Experience Replay, Horgan et al, 2018. Algorithm: Ape-X.

[75] Recurrent Experience Replay in Distributed Reinforcement Learning, Anonymous, 2018. Algorithm: R2D2.

[76] RLlib: Abstractions for Distributed Reinforcement Learning, Liang et al, 2017. Contribution: A scalable library of RL algorithm implementations. 


RL in the Real World


[77] Benchmarking Reinforcement Learning Algorithms on Real-World Robots, Mahmood et al, 2018.

[78] Learning Dexterous In-Hand Manipulation, OpenAI, 2018.

[79] QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation, Kalashnikov et al, 2018. Algorithm: QT-Opt.

[80] Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform, Gauci et al, 2018.


Safety


[81] Concrete Problems in AI Safety, Amodei et al, 2016. Contribution: establishes a taxonomy of safety problems, serving as an important jumping-off point for future research. We need to solve these!

[82] Deep Reinforcement Learning From Human Preferences, Christiano et al, 2017.Algorithm: LFP.

[83] Constrained Policy Optimization, Achiam et al, 2017. Algorithm: CPO.

[84] Safe Exploration in Continuous Action Spaces, Dalal et al, 2018. Algorithm: DDPG+Safety Layer.

[85] Trial without Error: Towards Safe Reinforcement Learning via Human Intervention, Saunders et al, 2017. Algorithm: HIRL.

[86] Leave No Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning, Eysenbach et al, 2017. Algorithm: Leave No Trace.


Imitation Learning and Inverse Reinforcement Learning


[87] Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy, Ziebart 2010. Contributions: Crisp formulation of maximum entropy IRL.

[88] Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, Finn et al, 2016. Algorithm: GCL.

[89] Generative Adversarial Imitation Learning, Ho and Ermon, 2016. Algorithm: GAIL.

[90] DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills, Peng et al, 2018. Algorithm: DeepMimic.

[91] Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow, Peng et al, 2018. Algorithm: VAIL.

[92] One-Shot High-Fidelity Imitation: Training Large-Scale Deep Nets with RL, Le Paine et al, 2018. Algorithm: MetaMimic.


Bonus: Classic Papers in RL Theory or Review


[93] Policy Gradient Methods for Reinforcement Learning with Function Approximation, Sutton et al, 2000. Contributions: Established policy gradient theorem and showed convergence of policy gradient algorithm for arbitrary policy classes.

[94] An Analysis of Temporal-Difference Learning with Function Approximation, Tsitsiklis and Van Roy, 1997. Contributions: Variety of convergence results and counter-examples for value-learning methods in RL.

[95] Reinforcement Learning of Motor Skills with Policy Gradients, Peters and Schaal, 2008. Contributions: Thorough review of policy gradient methods at the time, many of which are still serviceable descriptions of deep RL methods.

[96] Approximately Optimal Approximate Reinforcement Learning, Kakade and Langford, 2002. Contributions: Early roots for monotonic improvement theory, later leading to theoretical justification for TRPO and other algorithms.

[97] A Natural Policy Gradient, Kakade, 2002. Contributions: Brought natural gradients into RL, later leading to TRPO, ACKTR, and several other methods in deep RL.

[98] Algorithms for Reinforcement Learning, Szepesvari, 2009. Contributions: Unbeatable reference on RL before deep RL, containing foundations and theoretical background.


原文链接:

https://spinningup.openai.com/en/latest/spinningup/keypapers.html


-END-

专 · 知

人工智能领域26个主题知识资料全集获取与加入专知人工智能服务群: 欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!


请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!


请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

 AI 项目技术 & 商务合作:bd@zhuanzhi.ai, 或扫描上面二维码联系!

请关注专知公众号,获取人工智能的专业知识!

点击“阅读原文”,使用专知



登录查看更多
14

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
小贴士
相关资讯
17种深度强化学习算法用Pytorch实现
新智元
21+阅读 · 2019年9月16日
RL 真经
CreateAMind
4+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
4+阅读 · 2018年12月17日
OpenAI官方发布:强化学习中的关键论文
专知
10+阅读 · 2018年12月12日
【OpenAI】深度强化学习关键论文列表
专知
9+阅读 · 2018年11月10日
【代码集合】深度强化学习Pytorch实现集锦
机器学习算法与Python学习
7+阅读 · 2018年10月23日
深度强化学习的 18 个关键问题 | PaperDaily #30
PaperWeekly
3+阅读 · 2017年12月22日
强化学习族谱
CreateAMind
11+阅读 · 2017年8月2日
相关VIP内容
专知会员服务
141+阅读 · 2020年4月19日
专知会员服务
64+阅读 · 2020年2月8日
专知会员服务
85+阅读 · 2020年2月1日
专知会员服务
44+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
23+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
58+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
126+阅读 · 2019年10月9日
专知会员服务
66+阅读 · 2019年8月30日
相关论文
Continual Unsupervised Representation Learning
Dushyant Rao,Francesco Visin,Andrei A. Rusu,Yee Whye Teh,Razvan Pascanu,Raia Hadsell
5+阅读 · 2019年10月31日
Generalization and Regularization in DQN
Jesse Farebrother,Marlos C. Machado,Michael Bowling
5+阅读 · 2019年1月30日
Deep Reinforcement Learning: An Overview
Yuxi Li
11+阅读 · 2018年11月26日
Brett Daley,Christopher Amato
3+阅读 · 2018年10月23日
Hierarchical Deep Multiagent Reinforcement Learning
Hongyao Tang,Jianye Hao,Tangjie Lv,Yingfeng Chen,Zongzhang Zhang,Hangtian Jia,Chunxu Ren,Yan Zheng,Changjie Fan,Li Wang
5+阅读 · 2018年9月25日
Generalizing Across Multi-Objective Reward Functions in Deep Reinforcement Learning
Eli Friedman,Fred Fontaine
5+阅读 · 2018年9月17日
Abhishek Gupta,Benjamin Eysenbach,Chelsea Finn,Sergey Levine
6+阅读 · 2018年6月12日
Vinicius Zambaldi,David Raposo,Adam Santoro,Victor Bapst,Yujia Li,Igor Babuschkin,Karl Tuyls,David Reichert,Timothy Lillicrap,Edward Lockhart,Murray Shanahan,Victoria Langston,Razvan Pascanu,Matthew Botvinick,Oriol Vinyals,Peter Battaglia
4+阅读 · 2018年6月5日
Chiyuan Zhang,Oriol Vinyals,Remi Munos,Samy Bengio
7+阅读 · 2018年4月20日
Matthias Plappert,Rein Houthooft,Prafulla Dhariwal,Szymon Sidor,Richard Y. Chen,Xi Chen,Tamim Asfour,Pieter Abbeel,Marcin Andrychowicz
3+阅读 · 2018年1月31日
Top