经典书《斯坦福大学-多智能体系统》532页pdf

2020 年 1 月 29 日 专知
经典书《斯坦福大学-多智能体系统》532页pdf

斯坦福大学的经典书多智能体系统的算法、博弈论和逻辑基础《MULTIAGENT SYSTEMS Algorithmic, Game-Theoretic, and Logical Foundations》,532页pdf值得查看!


简介: 这本书需要数学思维,但只需要基本的背景知识。在本书的大部分内容中,我们都假设您具备基本的计算机科学知识(算法,复杂性)和基本的概率论。在更多的技术部分中,我们假设您熟悉Markov决策问题(MDP),数学编程(特别是线性和整数编程)和经典逻辑。

所有这些(基本计算机科学除外)都在附录中进行了简要介绍,但是它们只是作为更新和建立符号的用途,不能替代这些主题的背景知识。(尤其是概率论,这是正确的。)但是,最重要的是,先决条件是具有清晰思考的能力。

本书包括13个章节,大致分为以下几部分:

Block 1, Chapters 1–2:分布式问题解决

Block 2, Chapters 3–6:非合作博弈论

Block 3, Chapters 7:learning

Block 4, Chapters 8:交流

Block 5, Chapters 9–11:组协议

Block 6, Chapters 12:联盟博弈论

Block 7, Chapters 13–14:逻辑理论

部分目录:


地址:

http://www.masfoundations.org/download.html


便捷查看下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“MSB” 就可以获取《斯坦福大学-多智能体系统》532页pdf专知下载链接


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资料
登录查看更多
44

相关内容

多智能体系统(multi-agent system,MAS) 是一种全新的分布式计算技术。自20 世纪70年代出现以来得到迅速发展,目前已经成为一种进行复杂系统分析与模拟的思想方法与工具。

在复杂的以人为中心的系统中,每天的决策都具有决策相关信息不完全的特点。现有决策理论的主要问题是,它们没有能力处理概率和事件不精确的情况。在这本书中,我们描述了一个新的理论的决策与不完全的信息。其目的是将决策分析和经济行为的基础从领域二价逻辑转向领域模糊逻辑和Z约束,从行为决策的外部建模转向组合状态的框架。

这本书将有助于在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学的专业人员,学者,经理和研究生。

读者:专业人士,学者,管理者和研究生在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学。

成为VIP会员查看完整内容
0
124

作为布尔逻辑的替代

虽然逻辑是理性推理的数学基础和计算的基本原理,但它仅限于信息既完整又确定的问题。然而,许多现实世界的问题,从金融投资到电子邮件过滤,本质上是不完整或不确定的。概率论和贝叶斯计算共同提供了一个处理不完整和不确定数据的框架。

不完全和不确定数据的决策工具和方法

贝叶斯编程强调概率是布尔逻辑的替代选择,它涵盖了为真实世界的应用程序构建概率程序的新方法。本书由设计并实现了一个高效概率推理引擎来解释贝叶斯程序的团队编写,书中提供了许多Python示例,这些示例也可以在一个补充网站上找到,该网站还提供了一个解释器,允许读者试验这种新的编程方法。

原则和建模

只需要一个基本的数学基础,本书的前两部分提出了一种新的方法来建立主观概率模型。作者介绍了贝叶斯编程的原理,并讨论了概率建模的良好实践。大量简单的例子突出了贝叶斯建模在不同领域的应用。

形式主义和算法

第三部分综合了已有的贝叶斯推理算法的工作,因为需要一个高效的贝叶斯推理引擎来自动化贝叶斯程序中的概率演算。对于想要了解贝叶斯编程的形式主义、主要的概率模型、贝叶斯推理的通用算法和学习问题的读者,本文提供了许多参考书目。

常见问题

第四部分连同词汇表包含了常见问题的答案。作者比较了贝叶斯规划和可能性理论,讨论了贝叶斯推理的计算复杂性,讨论了不完全性的不可约性,讨论了概率的主观主义和客观主义认识论。

贝叶斯计算机的第一步

创建一个完整的贝叶斯计算框架需要新的建模方法、新的推理算法、新的编程语言和新的硬件。本书着重于方法论和算法,描述了实现这一目标的第一步。它鼓励读者探索新兴领域,例如仿生计算,并开发新的编程语言和硬件架构。

成为VIP会员查看完整内容
0
136

统计学习是一套以复杂数据建模和数据理解为目的的工具集,是近期才发展起来的统计学的一个新领域。本书出自统计学习领域声名显赫的几位专家,结合R语言介绍了分析大数据必不可少的工具,提供一些重要的建模和预测技术,并借助丰富的实验来解释如何用R语言实现统计学习方法。论题包括线性回归、分类、重抽样方法、压缩方法、基于树的方法、支持向量机、聚类等,作者借助彩图和实际案例直观解释这些方法。为了读者更好地理解书中内容,每章后还配有丰富的概念性和应用性练习题。

  书中内容与《The Elements of Statistical Learning》的大部分内容相同,但是本书起点低,弱化了数学推导的细节,更注重方法的应用,所以更适合作为入门教材。当然,这本《统计学习导论》不仅是优秀的“统计学习”或“机器学习”课程的教材,也是数据挖掘、数据分析等相关从业者不可或缺的参考书。

Gareth James 斯坦福大学统计学博士毕业,师从Trevor Hastie。现为南加州大学马歇尔商学院统计学教授,美国统计学会会士,数理统计协会终身会员,新西兰统计协会会员。《Statistica Sinica》、《Applications and Case Studies》、《Theory and Methods》等期刊的副主编。

  Daniela Witten 斯坦福大学统计学博士毕业,师从Robert Tibshirani。现为华盛顿大学生物统计学副教授,美国统计学会和国际数理统计协会会士,《Journal of Computational and Graphical Statistics》和《Biometrika》等期刊副主编。

  Trevor Hastie 美国统计学家和计算机科学家,斯坦福大学统计学教授,英国皇家统计学会、国际数理统计协会和美国统计学会会士。Hastie参与开发了 R 中的大部分统计建模软件和环境,发明了主曲线和主曲面。

  Robert Tibshirani 斯坦福大学统计学教授,国际数理统计协会、美国统计学会和加拿大皇家学会会士,1996年COPSS总统奖得主,提出lasso方法。Hastie和Tibshirani都是统计学习领域的泰山北斗,两人合著《The Elements of Statistical Learning》,还合作讲授斯坦福大学的公开课《统计学习》。  

成为VIP会员查看完整内容
0
104

简介: 这本书需要数学思维,但只需要基本的背景知识。 在本书的大部分内容中,我们都假设您具备基本的计算机科学知识(算法,复杂性)和基本的概率论。 在更多的技术部分中,我们假设您熟悉Markov决策问题(MDP),数学编程(特别是线性和整数编程)和经典逻辑。

所有这些(基本计算机科学除外)都在附录中进行了简要介绍,但是它们只是作为更新和建立符号的用途,不能替代这些主题的背景知识。 (尤其是概率论,这是正确的。)但是,最重要的是,先决条件是具有清晰思考的能力。

本书包括13个章节,大致分为以下几部分:

Block 1, Chapters 1–2:分布式问题解决

Block 2, Chapters 3–6:非合作博弈论

Block 3, Chapters 7:learning

Block 4, Chapters 8:交流

Block 5, Chapters 9–11:组协议

Block 6, Chapters 12:联盟博弈论

Block 7, Chapters 13–14:逻辑理论

部分目录:

成为VIP会员查看完整内容
0
93
小贴士
相关VIP内容
专知会员服务
124+阅读 · 2020年6月24日
专知会员服务
182+阅读 · 2020年6月8日
专知会员服务
43+阅读 · 2020年5月22日
专知会员服务
136+阅读 · 2020年5月18日
专知会员服务
91+阅读 · 2020年5月2日
专知会员服务
104+阅读 · 2020年4月29日
专知会员服务
122+阅读 · 2020年2月3日
【新书】Python中的经典计算机科学问题,224页pdf
专知会员服务
100+阅读 · 2019年12月28日
相关论文
A Survey on Bayesian Deep Learning
Hao Wang,Dit-Yan Yeung
40+阅读 · 2020年7月2日
Wenwu Zhu,Xin Wang,Peng Cui
18+阅读 · 2020年1月2日
Pasquale Minervini,Matko Bošnjak,Tim Rocktäschel,Sebastian Riedel,Edward Grefenstette
8+阅读 · 2019年12月17日
Object-centric Forward Modeling for Model Predictive Control
Yufei Ye,Dhiraj Gandhi,Abhinav Gupta,Shubham Tulsiani
4+阅读 · 2019年10月8日
Meta-Learning with Implicit Gradients
Aravind Rajeswaran,Chelsea Finn,Sham Kakade,Sergey Levine
7+阅读 · 2019年9月10日
KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning
Bill Yuchen Lin,Xinyue Chen,Jamin Chen,Xiang Ren
7+阅读 · 2019年9月4日
Joaquin Vanschoren
109+阅读 · 2018年10月8日
Physical Primitive Decomposition
Zhijian Liu,William T. Freeman,Joshua B. Tenenbaum,Jiajun Wu
3+阅读 · 2018年9月13日
Besnik Fetahu
14+阅读 · 2018年4月20日
John E. Vargas-Muñoz,Ananda S. Chowdhury,Eduardo B. Alexandre,Felipe L. Galvão,Paulo A. Vechiatto Miranda,Alexandre X. Falcão
9+阅读 · 2018年1月30日
Top