Python机器学习课程(代码与教程)

2019 年 5 月 13 日 专知
Python机器学习课程(代码与教程)

作者 | machinelearningmindset 

编译 | Xiaowen

github:

https://github.com/machinelearningmindset/machine-learning-course


目录


  • 简介

  • 目的

  • 机器学习

    • 机器学习基础

    • 监督学习

    • 非监督学习

    • 深度学习


简介


这个项目的目的是提供一个全面但简单的用python完成机器学习的教程。


目的


机器学习作为人工智能的一种工具,是应用最广泛的科学领域之一。大量关于机器学习的文献已经发表。本项目的目的是通过提供一系列使用python的简单而全面的教程来帮助读者学习机器学习。在这个项目中,我们使用许多不同的机器学习框架 (如Scikit-Learning) 构建我们的教程。在本项目中,你将了解:


  • 机器学习的定义

  • 开始和发展趋势

  • 机器学习的分类和子类

  • 机器学习中最常用的算法,以及如何实现这些算法


01

机器学习基础




1. 线性回归

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/linear_regression  


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/overview/linear-regression.rst


2. 过拟合/欠拟合


代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/overfitting  


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/overview/overfitting.rst


3. 正则化

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/regularization


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/overview/regularization.rst


4. 交叉验证

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/overview/cross-validation


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/overview/crossvalidation.rst


02

监督学习



1. 决策树

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/DecisionTree/decisiontrees.py


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/supervised/decisiontrees.rst


2. K近邻

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/KNN/knn.py


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/supervised/knn.rst


3. 朴素贝叶斯

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Naive_Bayes


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/supervised/bayes.rst


4. 逻辑回归

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/supervised/Logistic_Regression/logistic_ex1.py


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/supervised/logistic_regression.rst


5. 支持向量机

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/supervised/Linear_SVM/linear_svm.py


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/supervised/linear_SVM.rst


03

无监督学习


1. 聚类

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/unsupervised/Clustering


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/unsupervised/clustering.rst


2. 主成分分析

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/unsupervised/PCA


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/unsupervised/pca.rst


04

深度学习


1. 神经网络概览

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/deep_learning/mlp


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/deep_learning/mlp.rst


2. 卷积神经网络

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/deep_learning/cnn


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/deep_learning/cnn.rst


3. 自编码器

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/deep_learning/autoencoder


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/deep_learning/autoencoder.rst


4. 循环神经网络

代码:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/docs/source/content/deep_learning/autoencoder.rst


教程:

https://github.com/machinelearningmindset/machine-learning-course/blob/master/code/deep_learning/rnn/rnn.ipynb


作者信息:

Creator: Machine Learning Mindset 

Supervisor: Amirsina Torfi 

Developers: Brendan Sherman*, James E Hopkins* , Zac Smith 


-END-

专 · 知

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!540+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
20

相关内容

GitHub.com 使用 Git 作为版本控制系统(version control system)提供在线源码托管的服务,同时是个有社交功能的开发者社区。 国外类似服务: Bitbucket.com
Gitlab.com
国内类似服务:
Coding.net

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
229
小贴士
相关VIP内容
专知会员服务
123+阅读 · 2020年6月29日
【哈佛《CS50 Python人工智能入门》课程 (2020)】
专知会员服务
79+阅读 · 2020年4月12日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
229+阅读 · 2020年3月17日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
83+阅读 · 2020年3月15日
专知会员服务
68+阅读 · 2019年12月24日
谷歌机器学习速成课程中文版pdf
专知会员服务
98+阅读 · 2019年12月4日
【机器学习课程】Google机器学习速成课程
专知会员服务
84+阅读 · 2019年12月2日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
98+阅读 · 2019年10月28日
相关论文
TResNet: High Performance GPU-Dedicated Architecture
Tal Ridnik,Hussam Lawen,Asaf Noy,Itamar Friedman
6+阅读 · 2020年3月30日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Fuzhen Zhuang,Zhiyuan Qi,Keyu Duan,Dongbo Xi,Yongchun Zhu,Hengshu Zhu,Hui Xiong,Qing He
87+阅读 · 2019年11月7日
Yang Liu
3+阅读 · 2019年9月5日
Bryan Wilder,Eric Ewing,Bistra Dilkina,Milind Tambe
6+阅读 · 2019年5月31日
A Survey on Deep Learning for Named Entity Recognition
Jing Li,Aixin Sun,Jianglei Han,Chenliang Li
67+阅读 · 2018年12月22日
Interpretable Convolutional Neural Networks via Feedforward Design
C. -C. Jay Kuo,Min Zhang,Siyang Li,Jiali Duan,Yueru Chen
4+阅读 · 2018年10月5日
Karol Kurach,Mario Lucic,Xiaohua Zhai,Marcin Michalski,Sylvain Gelly
3+阅读 · 2018年7月12日
Hongyu Xu,Xutao Lv,Xiaoyu Wang,Zhou Ren,Navaneeth Bodla,Rama Chellappa
3+阅读 · 2018年3月27日
Top