项目名称: 执行器饱和系统的新型增益调度控制理论研究及其应用

项目编号: No.61503105

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 自动化技术、计算机技术

项目作者: 王茜

作者单位: 杭州电子科技大学

项目金额: 21万元

中文摘要: 执行器饱和非线性的存在经常给系统带来不利的影响,降低了系统的性能,甚至影响到系统的稳定性。针对执行器饱和系统,特别是当参数存在不确定时,单一的控制器已经不能满足控制系统的动态性能要求。然而,随着现代控制科学的发展,工程实际对于控制系统快速收敛的性能要求越来越高。因此,申请人提出了执行器饱和系统的新型增益调度控制方法来改善闭环系统的动态性能。本项目将进一步发展申请人前期所提新型增益调度控制方法来解决更为复杂的执行器饱和系统控制问题。针对执行器饱和系统研究鲁棒增益调度输出反馈控制方法、鲁棒干扰抑制增益调度控制方法及鲁棒容错增益调度控制方法,并将所提新型增益调度控制方法推广到执行器饱和离散系统中。进一步将所得研究结果应用于解决航天器轨道交会系统的控制问题,期望能够为实际工程应用提供一定的理论保证和技术支持。

中文关键词: 执行器饱和系统;增益调度控制;航天器轨道交会

英文摘要: Actuator saturation nonlinearity may lead to performance degradation and even instability of the closed-loop system. In view of the actuator saturated system, especially with parametric uncertainties, a single controller can not meet the requirements of the dynamic performance of the control system. However, with the development of modern control science, fast convergence performance requirements of the control system for practical application become increasingly high. Therefore, the applicant proposed the new gain scheduling control approach to improve the dynamic performance of the closed-loop system. This project will continue to develop the proposed new gain scheduling control method to solve a series of related complex control problems for the actuator saturation system. In this project, new theories on robust gain scheduling output feedback control, robust disturbance rejection gain scheduling control and robust fault tolerant gain scheduling control for the actuator saturation system will be studied. Besides, the proposed method will be extended to actuator saturation discrete system. Furthermore, the obtained results will be applied to the spacecraft orbital rendezvous system, and are expected to provide certain theoretical guidance and technical support for the control engineering practice.

英文关键词: Actuator Saturated Systems;Gain Scheduling Control;Spacecraft Orbital Rendezvous

成为VIP会员查看完整内容
0

相关内容

《过参数化机器学习理论》综述论文
专知会员服务
45+阅读 · 2021年9月19日
专知会员服务
29+阅读 · 2021年9月14日
逆优化: 理论与应用
专知会员服务
35+阅读 · 2021年9月13日
专知会员服务
46+阅读 · 2021年6月3日
专知会员服务
43+阅读 · 2021年5月24日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
【NeurIPS 2020】大规模分布式鲁棒优化方法
专知会员服务
25+阅读 · 2020年10月13日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
44+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
[CVPR 2020-港中文-MIT] 神经架构搜索鲁棒性
专知会员服务
25+阅读 · 2020年4月7日
稳定性与高可用保障的工作思路
阿里技术
0+阅读 · 2022年2月24日
基于文档的对话技术研究
专知
2+阅读 · 2022年2月20日
【博士论文】集群系统中的网络流调度
专知
4+阅读 · 2021年12月7日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
分布式智能计算系统前沿
中国计算机学会
18+阅读 · 2019年10月8日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
【工业智能】电网故障诊断的智能技术
产业智能官
33+阅读 · 2018年5月28日
【AAAI专题】论文分享:以生物可塑性为核心的类脑脉冲神经网络
中国科学院自动化研究所
15+阅读 · 2018年1月23日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关VIP内容
《过参数化机器学习理论》综述论文
专知会员服务
45+阅读 · 2021年9月19日
专知会员服务
29+阅读 · 2021年9月14日
逆优化: 理论与应用
专知会员服务
35+阅读 · 2021年9月13日
专知会员服务
46+阅读 · 2021年6月3日
专知会员服务
43+阅读 · 2021年5月24日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
【NeurIPS 2020】大规模分布式鲁棒优化方法
专知会员服务
25+阅读 · 2020年10月13日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
44+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
[CVPR 2020-港中文-MIT] 神经架构搜索鲁棒性
专知会员服务
25+阅读 · 2020年4月7日
相关资讯
稳定性与高可用保障的工作思路
阿里技术
0+阅读 · 2022年2月24日
基于文档的对话技术研究
专知
2+阅读 · 2022年2月20日
【博士论文】集群系统中的网络流调度
专知
4+阅读 · 2021年12月7日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
分布式智能计算系统前沿
中国计算机学会
18+阅读 · 2019年10月8日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
【工业智能】电网故障诊断的智能技术
产业智能官
33+阅读 · 2018年5月28日
【AAAI专题】论文分享:以生物可塑性为核心的类脑脉冲神经网络
中国科学院自动化研究所
15+阅读 · 2018年1月23日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员