项目名称: 基于碳纳米管/金属氧化物/石墨烯包裹结构的电化学电容行为研究

项目编号: No.21203238

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 陈名海

作者单位: 中国科学院苏州纳米技术与纳米仿生研究所

项目金额: 25万元

中文摘要: 超级电容器能量密度的提高往往带来功率密度和循环寿命的降低,如何兼顾三者性能一直是具有挑战性的研究,尚有许多科学问题未能解决。本项目拟探索碳纳米管@MnO2@石墨烯核壳包裹结构的可控制备及其电化学电容行为研究。以碳纳米管搭建多孔网络骨架,原位生长金属氧化物,随后包裹表面开孔的还原石墨烯,形成结构稳定的包裹结构。表面开孔石墨烯的包裹将显著提高结构稳定性,有利于氧化物高密度组装结构的构建;同时进一步改善与金属氧化物的二维平面接触,便利于电荷快速传输;并且有效避免包裹层对电解质与氧化物的阻隔负面作用。基于此三元包裹电极体系,有效地兼顾电极材料孔隙率、高比表面积、高导电率、高结构稳定性等结构性能特征,有望获得能量密度、功率密度和使用寿命的统一。项目研究将探索三元体系电化学电容行为协同增强机制,揭示其比电容、结构稳定性等宏观电学性能的微观作用机制,建立高性能电极材料的结构模型。

中文关键词: 超级电容器;碳纳米管;石墨烯;二氧化锰;过渡金属化合物

英文摘要: The increase of the energy density in supercapacitor usually results in the decrease of the power density and cycle life. It is still a challenging work to achieve the compromise among them and solve the corresponding scientific problems. In the proposal, the controlled preparation of carbon nanotube(CNT)@MnO2@graphene(GR) core@shell wrapping structure and its electrochemical capacitance performances will be studied. In the composite electrodes, CNT is used to construct the conductive network frame with MnO2 nanocrystals in-situ grown around it. Subsequently, holey GR is wrapped, which achieve a stable core@shell structure. The wrapped holey GR plays multifunction to the benefit of electrochemical capacitance performances. Firstly, the tightly wrapping structure is helpful to increase the core@shell structural stability, which is important to increase the loading amount of oxides around CNT frame. Secondly, GR wrapping around MnO2 can significantly improve conductivity of the electrode based on the 2-dimensinal contact between them, which can facilitate the charge transportation. Finally, the open holes in GR are effective channels for ions transportation, which will suppress the negative effect of obstructing the infiltration between oxides and electrolytes. The core@shell wrapping ternary electrode material is

英文关键词: supercapacitor;carbon nanotube;graphene;MnO2;transition metal compounds

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
专知会员服务
35+阅读 · 2021年5月28日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
13+阅读 · 2020年12月12日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关VIP内容
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
专知会员服务
35+阅读 · 2021年5月28日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
13+阅读 · 2020年12月12日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
微信扫码咨询专知VIP会员