After decades of research, the Internet of Things (IoT) is finally permeating real-life and helps improve the efficiency of infrastructures and processes as well as our health. As a massive number of IoT devices are deployed, they naturally incur great operational costs to ensure intended operations. To effectively handle such intended operations in massive IoT networks, automatic detection of malfunctioning, namely anomaly detection, becomes a critical but challenging task. In this paper, motivated by a real-world experimental IoT deployment, we introduce four types of wireless network anomalies that are identified at the link layer. We study the performance of threshold- and machine learning (ML)-based classifiers to automatically detect these anomalies. We examine the relative performance of three supervised and three unsupervised ML techniques on both non-encoded and encoded (autoencoder) feature representations. Our results demonstrate that; i) selected supervised approaches are able to detect anomalies with F1 scores of above 0.98, while unsupervised ones are also capable of detecting the said anomalies with F1 scores of, on average, 0.90, and ii) OC-SVM outperforms all the other unsupervised ML approaches reaching at F1 scores of 0.99 for SuddenD, 0.95 for SuddenR, 0.93 for InstaD and 0.95 for SlowD.


翻译:在经过数十年的研究之后,Tings Internet(IoT)终于渗透到现实生活中,并有助于提高基础设施和流程的效率以及我们的健康。随着大量IoT装置的部署,这些装置自然要付出巨大的业务费用以确保预定操作。为了在大型IoT网络中有效地处理这种预定操作,自动检测出故障,即异常点检测,是一项关键但具有挑战性的任务。在本文中,由于实际的实验性IoT的部署,我们引入了在链接层中发现的四种无线网络异常。我们研究了基于门槛和机器的分类仪(ML)的性能,以自动检测这些异常点。我们检查了三种受监管和三种不受监督的ML技术的相对性能,这些技术涉及无编码和编码(自动编码)的特征显示。我们的结果表明,选定的受监督方法能够检测出超过0.98分的F1分的异常点,而不受监督的方法也能检测到上述F1分的异常点,平均0.90分和0.95分的F-OC-R-D级的分类,用于0.95-SMIS-D的0.95的0.9、0.9的S-D级S-SIS-D的S-S-SIS-SIS-D的0.9-S-SISARxxx的0.9的0.9-S-S-S-S-S-SIS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SIS-SIS-SIS-SIS-SIS-SD-SD-Slxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,所有其他所有其他所有其他的0.

0
下载
关闭预览

相关内容

【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
37+阅读 · 2020年2月21日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
21+阅读 · 2020年10月11日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
11+阅读 · 2019年4月15日
Arxiv
3+阅读 · 2018年6月5日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员