主题: Deep Learning for Community Detection: Progress, Challenges and Opportunities

摘要: 由于社区代表着相似的观点,相似的功能,相似的目的等,因此社区检测对于科学查询和数据分析而言都是重要且极为有用的工具。 但是,随着深度学习技术显示出以令人印象深刻的性能处理高维图形数据的能力日益增强,诸如频谱聚类和统计推断之类的经典社区检测方法正在逐渐被淘汰。 因此,及时对通过深度学习进行社区检测的进展进行调查。 该领域分为该领域的三个广泛的研究流-深度神经网络,深度图嵌入和图神经网络,总结了每个流中各种框架,模型和算法的贡献以及当前尚未解决的挑战和 未来的研究机会尚待探索。

成为VIP会员查看完整内容
0
11

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

主题: Video Super Resolution Based on Deep Learning: A comprehensive survey

摘要: 近年来,深度学习在图像识别,视频分析,自然语言处理和语音识别(包括视频超分辨率任务)领域取得了长足的进步。在这项调查中,我们全面研究了基于深度学习的28种最先进的视频超分辨率方法。众所周知,视频帧内信息的杠杆作用对于视频超分辨率很重要。因此,我们提出了一种分类法,并根据利用帧间信息的方法将这些方法分为六个子类别。此外,详细描述了所有方法的体系结构和实现细节(包括输入和输出,损失函数和学习率)。最后,我们总结并比较了它们在不同放大率下在一些基准数据集上的性能。我们还讨论了一些挑战,视频超分辨率社区的研究人员需要进一步解决这些挑战。因此,这项工作有望为视频超分辨率研究的未来发展做出贡献,并减轻现有和未来技术的可理解性和可移植性。

成为VIP会员查看完整内容
0
15

主题: Deep Learning for Community Detection: Progress, Challenges and Opportunities

摘要: 由于社区代表着相似的观点,相似的功能,相似的目的等,因此社区检测在科学查询和数据分析中都是重要且极其有用的工具。 但是,随着深度学习技术展示出以令人印象深刻的性能处理高维图数据的能力日益增强,诸如频谱聚类和统计推断之类的经典社区检测方法正在逐渐被淘汰。 因此,对通过深度学习进行社区发现的当前进展进行调查是及时的。 本文分为三个领域,分别是深度神经网络,深度图嵌入和图神经网络,本文总结了各个框架中各种框架,模型和算法的贡献以及当前尚未解决的挑战以及 未来的研究机会有待探索。

成为VIP会员查看完整内容
0
23

主题: Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey

摘要: 如今,深度神经网络已广泛应用于对医疗至关重要的任务关键型系统,例如医疗保健,自动驾驶汽车和军事领域,这些系统对人类生活产生直接影响。然而,深层神经网络的黑匣子性质挑战了其在使用中的关键任务应用,引发了引起信任不足的道德和司法问题。可解释的人工智能(XAI)是人工智能(AI)的一个领域,它促进了一系列工具,技术和算法的产生,这些工具,技术和算法可以生成对AI决策的高质量,可解释,直观,人类可理解的解释。除了提供有关深度学习当前XAI格局的整体视图之外,本文还提供了开创性工作的数学总结。我们首先提出分类法,然后根据它们的解释范围,算法背后的方法,解释级别或用法对XAI技术进行分类,这有助于建立可信赖,可解释且自解释的深度学习模型。然后,我们描述了XAI研究中使用的主要原理,并介绍了2007年至2020年XAI界标研究的历史时间表。在详细解释了每种算法和方法之后,我们评估了八种XAI算法对图像数据生成的解释图,讨论了其局限性方法,并提供潜在的未来方向来改进XAI评估。

成为VIP会员查看完整内容
0
65

主题: Explainable Reinforcement Learning: A Survey

摘要: 可解释的人工智能(XAI),即更透明和可解释的AI模型的开发在过去几年中获得了越来越多的关注。这是由于这样一个事实,即AI模型随着其发展为功能强大且无处不在的工具而表现出一个有害的特征:性能与透明度之间的权衡。这说明了一个事实,即模型的内部工作越复杂,就越难以实现其预测或决策。但是,特别是考虑到系统像机器学习(ML)这样的方法(强化学习(RL))在系统自动学习的情况下,显然有必要了解其决策的根本原因。由于据我们所知,目前尚无人提供可解释性强化学习(XRL)方法的概述的工作,因此本调查试图解决这一差距。我们对问题进行了简短的总结,重要术语的定义以及提议当前XRL方法的分类和评估。我们发现a)大多数XRL方法通过模仿和简化一个复杂的模型而不是设计本质上简单的模型来起作用,并且b)XRL(和XAI)方法通常忽略了方程的人为方面,而不考虑相关领域的研究像心理学或哲学。因此,需要跨学科的努力来使所生成的解释适应(非专家)人类用户,以便有效地在XRL和XAI领域中取得进步。

成为VIP会员查看完整内容
0
49

随着深度学习在视觉、推荐系统、自然语言处理等诸多领域的不断发展,深度神经网络(DNNs)在生产系统中得到了广泛的应用。大数据集的可用性和高计算能力是这些进步的主要因素。这些数据集通常是众包的,可能包含敏感信息。这造成了严重的隐私问题,因为这些数据可能被滥用或通过各种漏洞泄露。即使云提供商和通信链路是可信的,仍然存在推理攻击的威胁,攻击者可以推测用于训练的数据的属性,或者找到底层的模型架构和参数。在这次调查中,我们回顾了深度学习带来的隐私问题,以及为解决这些问题而引入的缓解技术。我们还指出,在测试时间推断隐私方面的文献存在空白,并提出未来可能的研究方向。

成为VIP会员查看完整内容
0
34

主题: A Review on Deep Learning Techniques for Video Prediction

摘要: 预测,预期和推理未来结果的能力是智能决策系统的关键组成部分。鉴于深度学习在计算机视觉中的成功,基于深度学习的视频预测已成为有前途的研究方向。视频预测被定义为一种自我监督的学习任务,它代表了一个表示学习的合适框架,因为它展示了提取自然视频中潜在模式的有意义的表示的潜在能力。视频序列预测的深度学习方法。我们首先定义视频预测的基础知识,以及强制性的背景概念和最常用的数据集。接下来,我们会仔细分析根据拟议的分类法组织的现有视频预测模型,突出显示它们的贡献及其在该领域的意义。数据集和方法的摘要均附有实验结果,有助于在定量基础上评估现有技术。通过得出一些一般性结论,确定开放研究挑战并指出未来的研究方向来对本文进行总结。

成为VIP会员查看完整内容
0
30

题目: Image Segmentation Using Deep Learning: A Survey

摘要:

图像分割是图像处理和计算机视觉领域的一个重要课题,其应用领域包括场景理解、医学图像分析、机器人感知、视频监控、增强现实和图像压缩等。文献中已经发展了各种图像分割算法。最近,由于深度学习模型在广泛的视觉应用中取得了成功,已经有大量的工作致力于开发使用深度学习模型的图像分割方法。在本次调查中,我们对撰写本文时的文献进行了全面的回顾,涵盖了语义和实例级分割的广泛的开创性著作,包括全卷积像素标记网络,编码器-解码器架构,多尺度和基于金字塔的方法,递归网络,视觉注意力模型,以及在对抗性环境下的生成模型。我们调查了这些深度学习模型的相似性、优势和挑战,研究了最广泛使用的数据集,报告了性能,并讨论了该领域未来的研究方向。

成为VIP会员查看完整内容
0
58

主题: Deep Learning on Knowledge Graph for Recommender System: A Survey

摘要: 最近的研究表明,知识图谱(KG)在提供有价值的外部知识以改进推荐系统(RS)方面是有效的。知识图谱能够编码连接两个对象和一个或多个相关属性的高阶关系。借助于新兴的GNN,可以从KG中提取对象特征和关系,这是成功推荐的一个重要因素。本文对基于GNN的知识感知深度推荐系统进行了综述。具体来说,我们讨论了最新的框架,重点是它们的核心组件,即图嵌入模块,以及它们如何解决实际的推荐问题,如可伸缩性、冷启动等。我们进一步总结了常用的基准数据集、评估指标以及开源代码。最后,我们对调查结果进行了总结,并提出了这一快速发展领域的潜在研究方向。

成为VIP会员查看完整内容
0
81

简介: 人们在阅读文章时,可以识别关键思想,作出总结,并建立文章中的联系以及对其他需要理解的内容等方面都做得很出色。深度学习的最新进展使计算机系统可以实现类似的功能。用于自然语言处理的深度学习可教您将深度学习方法应用于自然语言处理(NLP),以有效地解释和使用文章。在这本书中,NLP专家Stephan Raaijmakers提炼了他对这个快速发展的领域中最新技术发展的研究。通过详细的说明和丰富的代码示例,您将探索最具挑战性的NLP问题,并学习如何通过深度学习解决它们!

自然语言处理是教计算机解释和处理人类语言的科学。最近,随着深度学习的应用,NLP技术已跃升至令人兴奋的新水平。这些突破包括模式识别,从上下文中进行推断以及确定情感语调,从根本上改善了现代日常便利性,例如网络搜索,以及与语音助手的交互。他们也在改变商业世界!

目录:

  • NLP和深度学习概述
  • 文本表示
  • 词嵌入
  • 文本相似性模型
  • 序列NLP
  • 语义角色标签
  • 基于深度记忆的NLP
  • 语言结构
  • 深度NLP的超参数

1深度NLP学习

  • 1.1概述
  • 1.2面向NLP的机器学习方法
  • 1.2.1感知机
  • 1.2.2 支持向量机
  • 1.2.3基于记忆的学习
  • 1.3深度学习
  • 1.4语言的向量表示
  • 1.4.1表示向量
  • 1.4.2运算向量
  • 1.5工具
  • 1.5.1哈希技巧
  • 1.5.2向量归一化
  • 1.6总结

2 深度学习和语言:基础知识

  • 2.1深度学习的基本构架
  • 2.1.1多层感知机
  • 2.1.2基本运算符:空间和时间
  • 2.2深度学习和NLP
  • 2.3总结

3文字嵌入

  • 3.1嵌入
  • 3.1.1手工嵌入
  • 3.1.2学习嵌入
  • 3.2word2vec
  • 3.3doc2vec
  • 3.4总结

4文字相似度

  • 4.1问题
  • 4.2数据
  • 4.2.1作者归属和验证数据
  • 4.3数据表示
  • 4.3.1分割文件
  • 4.3.2字的信息
  • 4.3.3子字集信息
  • 4.4相似度测量模型
  • 4.5.1多层感知机
  • 4.5.2CNN
  • 4.6总结

5序列NLP和记忆

  • 5.1记忆和语言
  • 5.1.1问答
  • 5.2数据和数据处理
  • 5.3序列模型的问答
  • 5.3.1用于问答的RNN
  • 5.3.2用于问答的LSTM
  • 5.3.3问答的端到端存储网络
  • 5.4总结

6NLP的6种情景记忆

  • 6.1序列NLP的记忆网络
  • 6.2数据与数据处理
  • 6.2.1PP附件数据
  • 6.2.2荷兰小数据
  • 6.2.3西班牙语词性数据
  • 6.3监督存储网络
  • 6.3.1PP连接
  • 6.3.2荷兰小商品
  • 6.3.3西班牙语词性标记
  • 6.4半监督存储网络
  • 6.5半监督存储网络:实验和结果
  • 6.6小结
  • 6.7代码和数据

7注意力机制

  • 7.1神经注意力机制
  • 7.2数据
  • 7.3静态注意力机制:MLP
  • 7.4暂态注意力机制:LSTM
  • 7.4.1实验
  • 7.5小结

8多任务学习

  • 8.1简介
  • 8.2数据
  • 8.3.1数据处理
  • 8.3.2硬参数共享
  • 8.3.3软参数共享
  • 8.3.4混合参数共享
  • 8.4主题分类
  • 8.4.1数据处理
  • 8.4.2硬参数共享
  • 8.4.3软参数共享
  • 8.4.4混合参数共享
  • 8.5词性和命名实体识别数据
  • 8.5.1数据处理
  • 8.5.2硬参数共享
  • 8.5.3软参数共享
  • 8.5.4混合参数共享
  • 8.6结论

附录

附录A:NLP

附录B:矩阵代数

附录C:超参数估计和分类器性能评估

成为VIP会员查看完整内容
0
33

论文主题: Recent Advances in Deep Learning for Object Detection

论文摘要: 目标检测是计算机视觉中的基本视觉识别问题,并且在过去的几十年中已得到广泛研究。目标检测指的是在给定图像中找到具有精确定位的特定目标,并为每个目标分配一个对应的类标签。由于基于深度学习的图像分类取得了巨大的成功,因此近年来已经积极研究了使用深度学习的对象检测技术。在本文中,我们对深度学习中视觉对象检测的最新进展进行了全面的调查。通过复习文献中最近的大量相关工作,我们系统地分析了现有的目标检测框架并将调查分为三个主要部分:(i)检测组件,(ii)学习策略(iii)应用程序和基准。在调查中,我们详细介绍了影响检测性能的各种因素,例如检测器体系结构,功能学习,建议生成,采样策略等。最后,我们讨论了一些未来的方向,以促进和刺激未来的视觉对象检测研究。与深度学习。

成为VIP会员查看完整内容
0
63
小贴士
相关VIP内容
专知会员服务
23+阅读 · 2020年7月9日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
49+阅读 · 2020年5月14日
相关资讯
初学者系列:推荐系统Wide & Deep Learning详解
图数据表示学习综述论文
专知
30+阅读 · 2019年6月10日
图像检索研究进展:浅层、深层特征及特征融合
机器学习研究会
57+阅读 · 2018年3月26日
深度学习(deep learning)发展史
机器学习算法与Python学习
6+阅读 · 2018年3月19日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
7+阅读 · 2016年12月7日
相关论文
Robust breast cancer detection in mammography and digital breast tomosynthesis using annotation-efficient deep learning approach
William Lotter,Abdul Rahman Diab,Bryan Haslam,Jiye G. Kim,Giorgia Grisot,Eric Wu,Kevin Wu,Jorge Onieva Onieva,Jerrold L. Boxerman,Meiyun Wang,Mack Bandler,Gopal Vijayaraghavan,A. Gregory Sorensen
9+阅读 · 2019年12月27日
Deep Learning for Deepfakes Creation and Detection
Thanh Thi Nguyen,Cuong M. Nguyen,Dung Tien Nguyen,Duc Thanh Nguyen,Saeid Nahavandi
4+阅读 · 2019年9月25日
Scene Text Detection and Recognition: The Deep Learning Era
Shangbang Long,Xin He,Cong Yao
13+阅读 · 2019年9月5日
Object Detection in 20 Years: A Survey
Zhengxia Zou,Zhenwei Shi,Yuhong Guo,Jieping Ye
36+阅读 · 2019年5月13日
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks,Mantas Mazeika,Thomas G. Dietterich
11+阅读 · 2018年12月21日
Ting-Wu Chin,Chia-Lin Yu,Matthew Halpern,Hasan Genc,Shiao-Li Tsao,Vijay Janapa Reddi
4+阅读 · 2018年10月4日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
7+阅读 · 2018年9月6日
Berkan Demirel,Ramazan Gokberk Cinbis,Nazli Ikizler-Cinbis
18+阅读 · 2018年5月17日
Ankan Bansal,Karan Sikka,Gaurav Sharma,Rama Chellappa,Ajay Divakaran
6+阅读 · 2018年4月12日
Heung-Yeung Shum,Xiaodong He,Di Li
6+阅读 · 2018年2月9日
Top