For deep neural networks (DNNs) to be used in safety-critical autonomous driving tasks, it is desirable to monitor in operation time if the input for the DNN is similar to the data used in DNN training. While recent results in monitoring DNN activation patterns provide a sound guarantee due to building an abstraction out of the training data set, reducing false positives due to slight input perturbation has been an issue towards successfully adapting the techniques. We address this challenge by integrating formal symbolic reasoning inside the monitor construction process. The algorithm performs a sound worst-case estimate of neuron values with inputs (or features) subject to perturbation, before the abstraction function is applied to build the monitor. The provable robustness is further generalized to cases where monitoring a single neuron can use more than one bit, implying that one can record activation patterns with a fine-grained decision on the neuron value interval.


翻译:对于用于安全关键自主驾驶任务的深神经网络(DNN)而言,如果DNN的输入与DNN培训使用的数据相似,那么最好在运行时监测。虽然监测DNN激活模式的最近结果提供了可靠的保证,因为从培训数据集中抽取一个数据,减少由于输入轻微的干扰造成的假阳性是成功调整技术的一个问题。我们通过将正式的象征性推理纳入监视器建设过程来应对这一挑战。算法在将输入(或特性)的输入(或特性)用于扰动的神经值进行一个最坏的预测,然后将抽象功能用于建立监测器。可证实的稳健性进一步推广到监测单个神经神经元可使用超过一位的情况,这意味着可以记录激活模式,对神经值间隔作出精细的决定。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
Python图像处理,366页pdf,Image Operators Image Processing in Python
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员