Dense arrays can facilitate the integration of multiple antennas into finite volumes. In addition to the compact size, sub-wavelength spacing enables superdirectivity for endfire operation, a phenomenon that has been mainly studied for isotropic and infinitesimal radiators. In this work, we focus on linear dipoles of arbitrary yet finite length. Specifically, we first introduce an array model that accounts for the sinusoidal current distribution (SCD) on very thin dipoles. Based on the SCD, the loss resistance of each dipole antenna is precisely determined. Capitalizing on the derived model, we next investigate the maximum achievable rate under a fixed power constraint. The optimal design entails conjugate power matching along with maximizing the array gain. Our theoretical analysis is corroborated by the method of moments under the thin-wire approximation, as well as by full-wave simulations. Numerical results showcase that a super-gain is attainable with high radiation efficiency when the dipole antennas are not too short and thin.
翻译:高密度阵列可以促进将多天天天纳入有限量中。 除了紧凑尺寸外, 亚波长间距还能为终端火力操作提供超导性。 这一现象主要针对异向和无限的散热器进行了研究。 在这项工作中, 我们侧重于任意但有限的线性极极极。 具体地说, 我们首先引入一个阵列模型, 用于计算非常薄的底极线上的正弦分布( SCD ) 。 基于 SCD, 每个dipole 天线的损失抵抗力是准确确定的。 利用衍生模型, 我们下一步将调查固定电力限制下的最大可实现率。 最佳设计需要将同力与最大量的阵列增量相匹配。 我们的理论分析得到薄线近时段方法以及全波模拟的证实。 数字结果显示, 当顶点天线不太短且不薄时, 超高辐射效率是可以实现的。