Computing the permanent of a $(0,1)$-matrix is a well-known $\#P$-complete problem. In this paper, we present an expression for the permanent of a bipartite graph in terms of the determinant of the graph and its subgraphs, obtained by successively removing rows and columns corresponding to vertices involved in vertex-disjoint $4k$-cycles. Our formula establishes a general relationship between the permanent and the determinant for any bipartite graph. Since computing the permanent of a biadjacency matrix is equivalent to counting the number of its perfect matchings, this approach also provides a more efficient method for counting perfect matchings in certain types of bipartite graphs. s in certain types of bipartite graphs.
翻译:暂无翻译