Forensic author profiling plays an important role in indicating possible profiles for suspects. Among the many automated solutions recently proposed for author profiling, transfer learning outperforms many other state-of-the-art techniques in natural language processing. Nevertheless, the sophisticated technique has yet to be fully exploited for author profiling. At the same time, whereas current methods of author profiling, all largely based on features engineering, have spawned significant variation in each model used, transfer learning usually requires a preprocessed text to be fed into the model. We reviewed multiple references in the literature and determined the most common preprocessing techniques associated with authors' genders profiling. Considering the variations in potential preprocessing techniques, we conducted an experimental study that involved applying five such techniques to measure each technique's effect while using the BERT model, chosen for being one of the most-used stock pretrained models. We used the Hugging face transformer library to implement the code for each preprocessing case. In our five experiments, we found that BERT achieves the best accuracy in predicting the gender of the author when no preprocessing technique is applied. Our best case achieved 86.67% accuracy in predicting the gender of authors.
翻译:法医作者特征分析在指出可能的嫌疑人特征方面起着重要作用。在最近为作者特征分析提出的许多自动化解决方案中,转移学习优于自然语言处理中许多其他最先进的技术。然而,尖端技术尚未充分用于作者特征分析。与此同时,目前主要基于特征工程的作者特征分析方法在使用的每一种模型中都产生了巨大的差异,而转移学习通常要求将一个预处理文本输入模型。我们审查了文献中的多个参考,确定了与作者性别特征分析有关的最常用的预处理技术。考虑到潜在预处理技术的变异,我们进行了一项实验研究,在使用生物和热处理模型时,应用五种此类技术测量每种技术的效果,因为选用的是最常用的预处理型模型之一。我们使用Hugging脸变型图书馆来实施每个预处理案例的代码。在我们五项实验中,我们发现生物和热处理模型在未应用预处理技术时,在预测作者性别方面达到了最佳的准确度。我们的最佳案例在预测作者性别方面达到了86.67%。