Recent work has shown the efficiency of deep learning models such as Fully Convolutional Networks (FCN) or Recurrent Neural Networks (RNN) to deal with Time Series Regression (TSR) problems. These models sometimes need a lot of data to be able to generalize, yet the time series are sometimes not long enough to be able to learn patterns. Therefore, it is important to make use of information across time series to improve learning. In this paper, we will explore the idea of using meta-learning for quickly adapting model parameters to new short-history time series by modifying the original idea of Model Agnostic Meta-Learning (MAML) \cite{finn2017model}. Moreover, based on prior work on multimodal MAML \cite{vuorio2019multimodal}, we propose a method for conditioning parameters of the model through an auxiliary network that encodes global information of the time series to extract meta-features. Finally, we apply the data to time series of different domains, such as pollution measurements, heart-rate sensors, and electrical battery data. We show empirically that our proposed meta-learning method learns TSR with few data fast and outperforms the baselines in 9 of 12 experiments.


翻译:最近的工作显示了深层学习模型的效率,如全面进化网络(FCN)或经常性神经网络(RNNN)等深层学习模型处理时间序列回归(TSR)问题的效率。这些模型有时需要大量数据才能概括化,但时间序列有时不够长,无法学习模式。因此,必须利用跨时间序列的信息来改进学习。在本文件中,我们将探索如何利用元学习来迅速将模型参数适应于新的短历史时间序列,办法是修改模型Agnostic Meta-Learning(MAML)的最初想法\cite{finn2017 model}。此外,根据MAMLAML 的以往工作,我们提出了一个调整模型参数的方法,即通过一个辅助网络将时间序列的全球信息编码来提取元特征。最后,我们将这些数据应用到不同领域的时间序列,例如污染测量、心率传感器和电荷电池数据等。此外,我们根据经验,根据关于MAML \ vvorio 2019 Multimodmodmodal 的工作,我们提出了一种调整模型参数的方法来调整模型参数,通过一个辅助网络来将模型的模型的模型,以学习方法来提取元数据。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
123+阅读 · 2020年11月20日
最新《深度强化学习中的迁移学习》综述论文
专知会员服务
153+阅读 · 2020年9月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
177+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
3+阅读 · 2020年7月16日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员