This paper addresses a safe planning and control problem for mobile robots operating in communication- and sensor-limited dynamic environments. In this case the robots cannot sense the objects around them and must instead rely on intermittent, external information about the environment, as e.g., in underwater applications. The challenge in this case is that the robots must plan using only this stale data, while accounting for any noise in the data or uncertainty in the environment. To address this challenge we propose a compositional technique which leverages neural networks to quickly plan and control a robot through crowded and dynamic environments using only intermittent information. Specifically, our tool uses reachability analysis and potential fields to train a neural network that is capable of generating safe control actions. We demonstrate our technique both in simulation with an underwater vehicle crossing a crowded shipping channel and with real experiments with ground vehicles in communication- and sensor-limited environments.
翻译:本文论述在通信和传感器有限动态环境中操作的移动机器人的安全规划和控制问题,在这种情况下,机器人无法感知周围物体,而必须依赖关于环境的间歇外部信息,例如水下应用中的环境信息。本案的挑战是机器人必须只计划使用这种陈旧的数据,同时计及数据中的任何噪音或环境的不确定性。为了应对这一挑战,我们建议采用一种构件技术,利用神经网络,利用仅断断断续续续的信息快速规划和控制一个拥挤和动态环境中的机器人。具体地说,我们的工具使用可及性分析和潜在字段来培训一个能够产生安全控制行动的神经网络。我们在模拟水下车辆穿越拥挤的运输通道和在通信和传感器有限环境中与地面车辆进行实际实验时,都展示了我们的技术。