A matrix $A$ is said to have the $\ell_p$-Restricted Isometry Property ($\ell_p$-RIP) if for all vectors $x$ of up to some sparsity $k$, $\|{Ax}\|_p$ is roughly proportional to $\|{x}\|_p$. We study this property for $m \times n$ matrices of rank proportional to $n$ and $k = \Theta(n)$. In this parameter regime, $\ell_p$-RIP matrices are closely connected to Euclidean sections, and are "real analogs" of testing matrices for locally testable codes. It is known that with high probability, random dense $m\times n$ matrices (e.g., with i.i.d. $\pm 1$ entries) are $\ell_2$-RIP with $k \approx m/\log n$, and sparse random matrices are $\ell_p$-RIP for $p \in [1,2)$ when $k, m = \Theta(n)$. However, when $m = \Theta(n)$, sparse random matrices are known to not be $\ell_2$-RIP with high probability. Against this backdrop, we show that sparse matrices cannot be $\ell_2$-RIP in our parameter regime. On the other hand, for $p \neq 2$, we show that every $\ell_p$-RIP matrix must be sparse. Thus, sparsity is incompatible with $\ell_2$-RIP, but necessary for $\ell_p$-RIP for $p \neq 2$. Under a suitable interpretation, our negative result about $\ell_2$-RIP gives an impossibility result for a certain continuous analog of "$c^3$-LTCs": locally testable codes of constant rate, constant distance and constant locality that were constructed in recent breakthroughs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员