For Site Reliability Engineers, alerts are typically the first and often the primary indications that a system may not be performing as expected. Once alerts are triggered, Site Reliability Engineers delve into detailed data across various modalities such as metrics, logs, and traces - to diagnose system issues. However, defining an optimal set of alerts is increasingly challenging due to the sheer volume of multi-modal observability data points in large cloud-native systems. Typically, alerts are manually curated, primarily defined on the metrics modality, and heavily reliant on subject matter experts manually navigating through the large state-space of intricate relationships in multi-modal observability data. Such a process renders defining alerts prone to insufficient coverage, potentially missing critical events. Defining alerts is even more challenging with the shift from traditional monolithic architectures to microservice based architectures due to the intricate interplay between microservices governed by the application topology in an ever stochastic environment. To tackle this issue, we take a data driven approach wherein we propose KIMetrix, a system that relies only on historical metric data and lightweight microservice traces to identify microservice metric criticality. KIMetrix significantly aids Subject Matter Experts by identifying a critical set of metrics to define alerts, averting the necessity of weaving through the vast multi-modal observability sphere. KIMetrix delves deep into the metric-trace coupling and leverages information theoretic measures to recommend microservice-metric mappings in a microservice topology-aware manner. Experimental evaluation on state-of-the-art microservice based applications demonstrates the effectiveness of our approach.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2023年6月23日
Arxiv
20+阅读 · 2021年9月22日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
25+阅读 · 2023年6月23日
Arxiv
20+阅读 · 2021年9月22日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员