In this paper, we investigate the question: Given a small number of datapoints, for example N = 30, how tight can PAC-Bayes and test set bounds be made? For such small datasets, test set bounds adversely affect generalisation performance by withholding data from the training procedure. In this setting, PAC-Bayes bounds are especially attractive, due to their ability to use all the data to simultaneously learn a posterior and bound its generalisation risk. We focus on the case of i.i.d. data with a bounded loss and consider the generic PAC-Bayes theorem of Germain et al. While their theorem is known to recover many existing PAC-Bayes bounds, it is unclear what the tightest bound derivable from their framework is. For a fixed learning algorithm and dataset, we show that the tightest possible bound coincides with a bound considered by Catoni; and, in the more natural case of distributions over datasets, we establish a lower bound on the best bound achievable in expectation. Interestingly, this lower bound recovers the Chernoff test set bound if the posterior is equal to the prior. Moreover, to illustrate how tight these bounds can be, we study synthetic one-dimensional classification tasks in which it is feasible to meta-learn both the prior and the form of the bound to numerically optimise for the tightest bounds possible. We find that in this simple, controlled scenario, PAC-Bayes bounds are competitive with comparable, commonly used Chernoff test set bounds. However, the sharpest test set bounds still lead to better guarantees on the generalisation error than the PAC-Bayes bounds we consider.


翻译:在本文中,我们调查了这样一个问题:鉴于数据点数量少,例如N=30,PAC-Bayes和测试设定界限能有多紧?对于这些小的数据集来说,测试设定界限会通过从培训程序中扣留数据而对概括性业绩产生不利影响。在这一背景下,PAC-Bayes的界限特别有吸引力,因为它们能够使用所有数据同时学习后方数据并约束其概括性风险。我们侧重于具有约束性损失的i.d.数据案例,并考虑通用的PAC-Bayes和Germain等人的通用PAC-Bayesorem。虽然它们的约束性界限已知可以恢复现有的许多PAC-Bayes的界限,但不清楚从它们的框架中衍生出的最紧密的界限会影响总体性业绩。对于固定的算法和数据集,我们显示,最可能最紧密的界限与Catonii的界限相吻合;对于数据集的分布,我们仍然在最佳的界限上设定一个较低的界限。 有趣的是,这种更低的束缚性是Chanoffer 测试在前的界限中,如果我们所使用的一种固定式测试,那么,我们所设定的上限,那么,那么,在之前的尺寸的尺寸的尺寸的尺寸的尺寸试验也是相同的。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月24日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员