In today's context, deploying data-driven services like recommendation on edge devices instead of cloud servers becomes increasingly attractive due to privacy and network latency concerns. A common practice in building compact on-device recommender systems is to compress their embeddings which are normally the cause of excessive parameterization. However, despite the vast variety of devices and their associated memory constraints, existing memory-efficient recommender systems are only specialized for a fixed memory budget in every design and training life cycle, where a new model has to be retrained to obtain the optimal performance while adapting to a smaller/larger memory budget. In this paper, we present a novel lightweight recommendation paradigm that allows a well-trained recommender to be customized for arbitrary device-specific memory constraints without retraining. The core idea is to compose elastic embeddings for each item, where an elastic embedding is the concatenation of a set of embedding blocks that are carefully chosen by an automated search function. Correspondingly, we propose an innovative approach, namely recommendation with universally learned elastic embeddings (RULE). To ensure the expressiveness of all candidate embedding blocks, RULE enforces a diversity-driven regularization when learning different embedding blocks. Then, a performance estimator-based evolutionary search function is designed, allowing for efficient specialization of elastic embeddings under any memory constraint for on-device recommendation. Extensive experiments on real-world datasets reveal the superior performance of RULE under tight memory budgets.


翻译:在今天的背景下,由于隐私和网络潜伏问题,部署诸如边缘设备而非云层服务器上的建议等数据驱动服务越来越具有吸引力。 建立精密设备推荐系统的一个常见做法是压缩通常造成过度参数化的嵌入系统,尽管设备种类繁多,且存在相关的内存限制,但现有记忆效率建议系统仅专门用于每个设计和培训生命周期的固定存储预算,因为新模型必须经过再培训,才能取得最佳性能,同时适应较小/更大的记忆嵌入预算。在本文件中,我们提出了一个新的轻重建议模式,使训练有素的推荐者能够在不进行再培训的情况下为任意特定设备内存限制定制。核心想法是为每个项目配置弹性嵌入的嵌入系统,因为弹性嵌入是一组嵌入的嵌入区块,这些嵌入模块由自动搜索功能仔细选择。我们相应地提出一种创新办法,即建议采用普遍学习的弹性嵌入式嵌入(RULEE),以确保所有候选人的内嵌入性内嵌入性精细度预算的精细度预算,在不断升级的内嵌入的内嵌入阶段里,让所有候选人的内嵌入的内嵌入的内嵌入的内嵌入系统运行的内装的内行功能,在不断升级的内化的内,学习的内嵌入的内嵌入的内嵌入的内嵌入性功能是学习的内校。

0
下载
关闭预览

相关内容

图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
96+阅读 · 2019年12月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
微软发布Visual Studio Tools for AI
AI前线
4+阅读 · 2017年11月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
微软发布Visual Studio Tools for AI
AI前线
4+阅读 · 2017年11月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员