We present a novel Neural Embedding Spatio-Temporal (NEST) point process model for spatio-temporal discrete event data and develop an efficient imitation learning (a type of reinforcement learning) based approach for model fitting. Despite the rapid development of one-dimensional temporal point processes for discrete event data, the study of spatial-temporal aspects of such data is relatively scarce. Our model captures complex spatio-temporal dependence between discrete events by carefully design a mixture of heterogeneous Gaussian diffusion kernels, whose parameters are parameterized by neural networks. This new kernel is the key that our model can capture intricate spatial dependence patterns and yet still lead to interpretable results as we examine maps of Gaussian diffusion kernel parameters. The imitation learning model fitting for the NEST is more robust than the maximum likelihood estimate. It directly measures the divergence between the empirical distributions between the training data and the model-generated data. Moreover, our imitation learning-based approach enjoys computational efficiency due to the explicit characterization of the reward function related to the likelihood function; furthermore, the likelihood function under our model enjoys tractable expression due to Gaussian kernel parameterization. Experiments based on real data show our method's good performance relative to the state-of-the-art and the good interpretability of NEST's result.


翻译:我们提出了一个全新的神经嵌入式Spatio-Temporal(NEST)点进程模型,用于空间时离散事件数据,并开发一种基于模型安装的高效模仿学习(一种强化学习)方法。尽管为离散事件数据迅速开发了一维时间点进程,但这些数据的空间时空方面研究相对较少。我们的模型通过仔细设计混合的混杂高山扩散内核(其参数由神经网络加以参数参数化)来捕捉离散事件之间的复杂时空依赖性。这个新的内核是我们模型能够捕捉复杂的空间依赖模式的关键,但随着我们研究高斯扩散内核参数的地图,仍然能够导致可解释的结果。为NEST设计的模拟学习模型比最大的可能性估计要强得多。它直接测量了培训数据与模型生成的数据之间的实际分布差异。此外,我们模拟学习法方法具有计算效率,因为对与概率功能相关的奖励功能作了明确的定性描述。此外,根据我们高斯扩散内核模型的模型,根据我们良好的实验性模型显示我们的良好表现结果。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
1+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月15日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
4+阅读 · 2018年9月11日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年3月18日
Arxiv
1+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月15日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
4+阅读 · 2018年9月11日
Arxiv
11+阅读 · 2018年7月8日
Top
微信扫码咨询专知VIP会员