In this paper, sparsification techniques aided online prediction algorithms in a reproducing kernel Hilbert space are studied for nonstationary time series. The online prediction algorithms as usual consist of the selection of kernel structure parameters and the kernel weight vector updating. For structure parameters, the kernel dictionary is selected by some sparsification techniques with online selective modeling criteria, and moreover the kernel covariance matrix is intermittently optimized in the light of the covariance matrix adaptation evolution strategy (CMA-ES). Optimizing the real symmetric covariance matrix can not only improve the kernel structure's flexibility by the cross relatedness of the input variables, but also partly alleviate the prediction uncertainty caused by the kernel dictionary selection for nonstationary time series. In order to sufficiently capture the underlying dynamic characteristics in prediction-error time series, a generalized optimization strategy is designed to construct the kernel dictionary sequentially in multiple kernel connection modes. The generalized optimization strategy provides a more self-contained way to construct the entire kernel connections, which enhances the ability to adaptively track the changing dynamic characteristics. Numerical simulations have demonstrated that the proposed approach has superior prediction performance for nonstationary time series.


翻译:在本文中,为非静止时间序列而研究了复制内核Hilbert空间的封闭化技术辅助在线预测算法。通常,在线预测算法包括选择内核结构参数和内核重量矢量更新。对于结构参数,内核字典是由某些有在线选择性模型标准的封闭化技术选择的,此外,内核共差矩阵则根据共变矩阵适应进化战略(CMA-ES)而间歇优化。优化真实的对称共变式矩阵不仅能够通过输入变量的交叉关联来提高内核结构的灵活性,而且可以部分减轻因选择非静止时间序列的内核字典而导致的预测不确定性。为了充分捕捉预测-神经时间序列中的基本动态特征,设计了一个普遍化的优化战略,以便按照多个内核连接模式按顺序构建内核词词典。通用优化战略为构建整个内核内核连接提供了一种更自成一体的方法,通过输入变量的交叉关联性来增强内核结构的灵活性,从而增强适应性内核内核系统模拟所显示的动态特性的变化。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员