We propose OneFlow - a flow-based one-class classifier for anomaly (outlier) detection that finds a minimal volume bounding region. Contrary to density-based methods, OneFlow is constructed in such a way that its result typically does not depend on the structure of outliers. This is caused by the fact that during training the gradient of the cost function is propagated only over the points located near to the decision boundary (behavior similar to the support vectors in SVM). The combination of flow models and a Bernstein quantile estimator allows OneFlow to find a parametric form of bounding region, which can be useful in various applications including describing shapes from 3D point clouds. Experiments show that the proposed model outperforms related methods on real-world anomaly detection problems.


翻译:我们建议“OneFlow”——一个以流动为基础的单级分类器,用于检测异常(外层),该分类器可以找到最小的体积界限区域。与基于密度的方法相反,“OneFlow”的构建方式是,其结果通常不取决于外部层的结构。造成这种情况的原因是,在培训过程中,成本函数的梯度只传播到靠近决定边界的点(行为类似于SVM中的辅助矢量)。流量模型和伯恩斯坦量度估计仪的组合使得OneFlow能够找到一种约束区域的参数形式,这种形式在各种应用中有用,包括描述3D点云的形状。实验表明,拟议的模型在现实世界异常探测问题上超越了相关方法。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
34+阅读 · 2021年9月16日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
已删除
将门创投
14+阅读 · 2019年5月29日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Learning Memory-guided Normality for Anomaly Detection
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
34+阅读 · 2021年9月16日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
已删除
将门创投
14+阅读 · 2019年5月29日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关论文
Learning Memory-guided Normality for Anomaly Detection
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
4+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员