题目: Anomalous Instance Detection in Deep Learning: A Survey

摘要:

深度学习(DL)容易受到分布不均匀和对抗性示例的影响,从而导致不正确的输出。为了使DL更具有鲁棒性,最近提出了几种方法:异常检测技术来检测(并丢弃)这些异常样本。本研究试图为基于DL的应用程序异常检测的研究提供一个结构化的、全面的概述。我们根据现有技术的基本假设和采用的方法为它们提供了一个分类。我们讨论了每个类别中的各种技术,并提供了这些方法的相对优势和劣势。我们在这次调查中的目标是提供一个更容易并且更好理解的技术,这项技术是在这方面已经做过研究的,且属于不同的类别的。最后,我们强调了在DL系统中应用异常检测技术所面临的未解决的研究挑战,并提出了一些具有重要影响的未来研究方向。

成为VIP会员查看完整内容
0
53

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

题目: The Creation and Detection of Deepfakes: A Survey

摘要: 本文综述了元学习在图像分类、自然语言处理和机器人等领域的应用。与深度学习不同,元学习使用小样本数据集,并考虑进一步改进模型泛化以获得更高的预测精度。我们将元学习模型归纳为三类:黑箱适应模型、基于相似度的方法模型和元学习过程模型。最近的应用集中在将元学习与贝叶斯深度学习和强化学习相结合,以提供可行的集成问题解决方案。介绍了元学习方法的性能比较,并讨论了今后的研究方向。

成为VIP会员查看完整内容
0
38

题目: A Survey of Single-Scene Video Anomaly Detection

简介: 这篇调查文章总结了关于单个场景的视频馈送中的异常检测主题的研究趋势。 我们讨论了各种问题的表述,公开可用的数据集和评估标准。 我们将过去的研究归类并归类为一个直观的分类法。 最后,我们还提供了最佳实践,并为将来的研究提供了一些可能的方向。

成为VIP会员查看完整内容
0
16

深度学习(DL)容易受到分布外出和对抗性样本的影响,从而导致不正确的输出。为了使DL更健壮,最近提出了几种后方法异常检测技术来检测(并丢弃)这些异常样本。本研究试图为基于DL的应用程序异常检测的研究提供一个结构化的、全面的综述。我们根据现有技术的基本假设和采用的方法为它们提供了一个分类。我们讨论了每个类别中的各种技术,并提供了这些方法的相对优势和劣势。我们在这次调查中的目标是提供一个更容易,但更好地理解技术属于不同的类别,在这方面的研究已经做了。最后,我们强调了在DL系统中应用异常检测技术所面临的未解决的研究挑战,并提出了一些具有重要影响的未来研究方向。

成为VIP会员查看完整内容
0
60

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

0
21
下载
预览

论文题目: Salient Object Detection in the Deep Learning Era: An In-Depth Survey

论文摘要: 作为计算机视觉中的一个重要问题,图像中的显著目标检测(SOD)近年来得到了越来越多的研究。最近在超氧化物歧化酶方面的进展主要是基于深度学习的解决方案(称为深超氧化物歧化酶)。为了便于深入理解深层SODs,本文提供了一个全面的综述,涵盖了从算法分类到未解决的开放问题的各个方面。特别是,我们首先从网络结构、监控级别、学习范式和对象/实例级别检测等不同角度对深度超氧化物歧化酶算法进行了综述。在此基础上,总结了现有的SOD评价数据集和指标体系。然后,在前人工作的基础上,认真编写了一个完整的SOD方法的基准测试结果,并对对比结果进行了详细的分析。另外,通过构造一个新的具有丰富属性标注的SOD数据集,研究了不同属性下的SOD算法的性能,这在以前的研究中是很少的。我们首次在现场进一步分析了deep-SOD模型的鲁棒性和可转移性。我们还研究了输入扰动的影响,以及现有SOD数据集的通用性和硬度。最后,讨论了超氧化物歧化酶存在的问题和挑战,并指出了未来可能的研究方向。

成为VIP会员查看完整内容
Salient Object Detection in the Deep Learning Era An In-Depth Survey.pdf
0
29

论文主题: Deep Learning for Image Super-resolution: A Survey

论文摘要: 图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。近年来,基于深度学习的图像超分辨率研究取得了显著进展技术。在这项调查中,我们旨在介绍利用深度学习的图像超分辨率技术的最新进展系统的方法。一般来说,我们可以粗略地将现有的SR技术研究分为三大类:监督SR、非监督SR和领域特定SR。此外,我们还讨论了一些其他重要问题,如公开可用的基准数据集和性能评估指标。最后,我们通过强调几个未来来结束这项调查未来社区应进一步解决的方向和公开问题.

成为VIP会员查看完整内容
0
35

论文主题: Recent Advances in Deep Learning for Object Detection

论文摘要: 目标检测是计算机视觉中的基本视觉识别问题,并且在过去的几十年中已得到广泛研究。目标检测指的是在给定图像中找到具有精确定位的特定目标,并为每个目标分配一个对应的类标签。由于基于深度学习的图像分类取得了巨大的成功,因此近年来已经积极研究了使用深度学习的对象检测技术。在本文中,我们对深度学习中视觉对象检测的最新进展进行了全面的调查。通过复习文献中最近的大量相关工作,我们系统地分析了现有的目标检测框架并将调查分为三个主要部分:(i)检测组件,(ii)学习策略(iii)应用程序和基准。在调查中,我们详细介绍了影响检测性能的各种因素,例如检测器体系结构,功能学习,建议生成,采样策略等。最后,我们讨论了一些未来的方向,以促进和刺激未来的视觉对象检测研究。与深度学习。

成为VIP会员查看完整内容
0
63

论文题目: Object Detection in 20 Years: A Survey

论文简介:
目标检测作为计算机视觉中最基本和最具挑战性的问题之一,近年来受到了极大的关注。它在过去二十年的发展可以看作是计算机视觉历史的缩影。如果我们将当今的物体检测视为在深度学习的力量下的技术美学,那么将时光倒流到20年前,我们将见证冷武器时代的智慧。鉴于目标检测技术的技术发展,本文跨越了四分之一世纪的时间(从1990年代到2019年)广泛地审查了400多篇论文。本文涵盖了许多主题,包括历史上的里程碑检测器,检测数据集,度量,检测系统的基本构建块,加速技术以及最新的检测技术水平。本文还回顾了一些重要的检测应用程序,例如行人检测,面部检测,文本检测等,并对它们的挑战以及近年来的技术改进进行了深入分析。

成为VIP会员查看完整内容
0
42

论文题目: A Survey of Deep Learning-based Object Detection

论文摘要: 目标检测是计算机视觉中最重要和最具挑战性的分支之一,它已广泛应用于人们的生活中,例如监视安全性,自动驾驶等。随着用于检测任务的深度学习网络的迅速发展,对象检测器的性能得到了极大的提高。为了深入地了解目标检测的主要发展状况,在本次调查中,我们首先分析了现有典型检测模型的方法并描述了基准数据集。之后,我们以系统的方式全面概述了各种目标检测方法,涵盖了一级和二级检测器。此外,我们列出了传统和新的应用程序。还分析了对象检测的一些代表性分支。最后,我们讨论了利用这些对象检测方法来构建有效且高效的系统的体系结构,并指出了一组发展趋势,以更好地遵循最新的算法和进一步的研究。

作者介绍: Licheng Jiao 1982年获得中国上海交通大学博士学位,并分别于1984年和1990年获得西安交通大学的博士学位。 1990年至1991年,他是西安电子科技大学雷达信号处理国家重点实验室的博士后研究员。自1992年以来,焦博士一直是中国西安电子科技大学电子工程学院的教授,目前是电子工程学院的院长,也是智能感知与图像理解重点实验室的主任。 西安电子科技大学中国教育部 1992年,焦博士获得了青年科学技术奖。 1996年,他获得了中国教育部跨世纪专家基金的资助。 从1996年起,他被选为“中国第一级人才计划”的成员。2006年,他被霍英东教育基金会授予高中青年教师奖一等奖。 从2006年起,他被选为陕西省特别贡献专家。

成为VIP会员查看完整内容
0
36

异常检测是一个在各个研究领域和应用领域内得到广泛研究的重要问题。本研究的目的有两个方面:首先,我们对基于深度学习的异常检测的研究方法进行了系统全面的综述。此外,我们还回顾了这些方法对不同应用领域异常的应用,并评估了它们的有效性。我们根据所采用的基本假设和方法,将最先进的研究技术分为不同的类别。在每一类中,我们概述了基本的异常检测技术,以及它的变体,并给出了关键的假设,以区分正常行为和异常行为。对于我们介绍的每一类技术,我们还介绍了它们的优点和局限性,并讨论了这些技术在实际应用领域中的计算复杂性。最后,我们概述了研究中的未决问题和采用这些技术时所面临的挑战。

成为VIP会员查看完整内容
20190114-DEEP LEARNING FOR ANOMALY DETECTION A SURVEY.pdf
0
130
小贴士
相关VIP内容
相关论文
Anomalous Instance Detection in Deep Learning: A Survey
Saikiran Bulusu,Bhavya Kailkhura,Bo Li,Pramod K. Varshney,Dawn Song
21+阅读 · 2020年3月16日
Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark
Ke Li,Gang Wan,Gong Cheng,Liqiu Meng,Junwei Han
19+阅读 · 2019年9月22日
Object detection on aerial imagery using CenterNet
Dheeraj Reddy Pailla,Varghese Kollerathu,Sai Saketh Chennamsetty
6+阅读 · 2019年8月22日
Object Detection in 20 Years: A Survey
Zhengxia Zou,Zhenwei Shi,Yuhong Guo,Jieping Ye
36+阅读 · 2019年5月13日
Jiangmiao Pang,Kai Chen,Jianping Shi,Huajun Feng,Wanli Ouyang,Dahua Lin
5+阅读 · 2019年4月4日
Ioannis Athanasiadis,Panagiotis Mousouliotis,Loukas Petrou
3+阅读 · 2018年11月12日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
7+阅读 · 2018年9月6日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Jiayuan Gu,Han Hu,Liwei Wang,Yichen Wei,Jifeng Dai
4+阅读 · 2018年3月19日
Pingping Zhang,Luyao Wang,Dong Wang,Huchuan Lu,Chunhua Shen
5+阅读 · 2018年2月20日
Top