Datasets with extreme observations and/or heavy-tailed error distributions are commonly encountered and should be analyzed with careful consideration of these features from a statistical perspective. Small deviations from an assumed model, such as the presence of outliers, can cause classical regression procedures to break down, potentially leading to unreliable inferences. Other distributional deviations, such as heteroscedasticity, can be handled by going beyond the mean and modelling the scale parameter in terms of covariates. We propose a method that accounts for heavy tails and heteroscedasticity through the use of a generalized normal distribution (GND). The GND contains a kurtosis-characterizing shape parameter that moves the model smoothly between the normal distribution and the heavier-tailed Laplace distribution - thus covering both classical and robust regression. A key component of statistical inference is determining the set of covariates that influence the response variable. While correctly accounting for kurtosis and heteroscedasticity is crucial to this endeavour, a procedure for variable selection is still required. For this purpose, we use a novel penalized estimation procedure that avoids the typical computationally demanding grid search for tuning parameters. This is particularly valuable in the distributional regression setting where the location and scale parameters depend on covariates, since the standard approach would have multiple tuning parameters (one for each distributional parameter). We achieve this by using a "smooth information criterion" that can be optimized directly, where the tuning parameters are fixed at $\log(n)$ in the BIC case.


翻译:带有极端观测和(或)重尾误差分布的数据集通常会遇到,并且应该从统计角度仔细考虑这些特征来分析。与假设模型的细小偏差,例如外部线的存在,可能导致经典回归程序崩溃,可能导致不可靠的推论。其他分布偏差,例如异相性,可以通过超出平均值来处理,用共变法来模拟比例参数。我们建议一种方法,通过使用通用的正常分布(GND)来计算重尾和超正差。GND包含一个库特松is-字符化形状参数,该模型在正常分布和较细的拉位分布之间移动顺利,从而有可能导致不可靠的推论。其他分布偏差,例如异性等,可以通过超越平均值来处理,用共变差参数来模拟比例参数。虽然正确计算曲折和超差性,但仍需要一种变量搜索程序。为此,我们使用一种新式的精确度估算参数,使模型在正常分布分布和更精确的拉比值分布标准之间移动,从而避免了典型的比值,因此,在计算每个典型的比值中,在计算中,可以使典型的比值精确的比值的比值的比值的比值中,可以使标准的比值的比值能够使每个比值的比值的比值能够使标准的比值调整。

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年5月6日
VIP会员
相关VIP内容
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员