Connecting an ever-expanding catalogue of products with suitable manufacturers and suppliers is critical for resilient, efficient global supply chains, yet traditional methods struggle to capture complex capabilities, certifications, geographic constraints, and rich multimodal data of real-world manufacturer profiles. To address these gaps, we introduce PMGraph, a public benchmark of bipartite and heterogeneous multimodal supply-chain graphs linking 8,888 manufacturers, over 70k products, more than 110k manufacturer-product edges, and over 29k product images. Building on this benchmark, we propose the Cascade Multimodal Attributed Graph C-MAG, a two-stage architecture that first aligns and aggregates textual and visual attributes into intermediate group embeddings, then propagates them through a manufacturer-product hetero-graph via multiscale message passing to enhance link prediction accuracy. C-MAG also provides practical guidelines for modality-aware fusion, preserving predictive performance in noisy, real-world settings.
翻译:将不断扩展的产品目录与合适的制造商和供应商连接起来对于构建有韧性、高效的全球供应链至关重要,然而传统方法难以捕捉现实世界制造商档案中复杂的能力、认证、地理约束以及丰富的多模态数据。为弥补这些不足,我们引入了PMGraph,这是一个公开的二分及异质多模态供应链图基准数据集,它连接了8,888家制造商、超过70,000种产品、超过110,000条制造商-产品边以及超过29,000张产品图像。基于此基准,我们提出了级联多模态属性图C-MAG,这是一种两阶段架构:首先将文本和视觉属性对齐并聚合为中间组嵌入,然后通过多尺度消息传递在制造商-产品异质图中传播这些嵌入,以提高链路预测的准确性。C-MAG还为模态感知融合提供了实用指导,在嘈杂的现实世界环境中保持预测性能。