Understanding the dynamics of functional brain connectivity patterns using noninvasive neuroimaging techniques is an important focus in human neuroscience. Vector autoregressive (VAR) processes and Granger causality analysis (GCA) have been extensively used for this purpose. While high-resolution multi-subject neuroimaging data are routinely collected now-a-days, the statistics literature on VAR models has remained heavily focused on small-to-moderate dimensional problems and single-subject data. Motivated by these issues, we develop a novel Bayesian random effects panel VAR model for multi-subject high-dimensional neuroimaging data. We begin with a single-subject model that structures the VAR coefficients as a three-way tensor, then reduces the dimensions by applying a Tucker tensor decomposition. A novel sparsity-inducing shrinkage prior allows data-adaptive rank and lag selection. We then extend the approach to a novel random effects model for multi-subject data that carefully avoids the dimensions getting exploded with the number of subjects but also flexibly accommodates subject-specific heterogeneity. We design a Markov chain Monte Carlo algorithm for posterior computation. Finally, GCA with posterior false discovery control is performed on the posterior samples. The method shows excellent empirical performance in simulation experiments. Applied to our motivating functional magnetic resonance imaging study, the approach allows the directional connectivity of human brain networks to be studied in fine detail, revealing meaningful but previously unsubstantiated cortical connectivity patterns.
翻译:利用非侵入性神经成像技术了解大脑连接功能模式的动态,这是人类神经科学的一个重要焦点。 病媒自反(VAR)进程和Granger因果关系分析(GCA)已被广泛用于此目的。 虽然现在每天例行收集高分辨率多主题神经成像数据,但VAR模型的统计文献仍然大量侧重于小到中度的维维度问题和单一主题数据。受这些问题的驱动,我们开发了一个新颖的Bayesian随机效应面板VAR模型,用于多主题高度神经成像数据。我们首先开发了一个单一主题模型,将VAR系数作为三路导体,然后通过应用Tark Extor 解构筑一个高分辨率的多主题神经成像数据分析数据模型(GCA ) 来降低其尺寸。 一种新颖的吸引缩略图的缩略图使得数据适应性等级和滞后数据选择成为新的随机效应模型。 我们随后将这一方法推广到一个多主题数据模型的随机效应模型模型,小心避免其尺寸与多个主题发生爆炸,但也灵活地适应特定主题的神经成型数据。 我们设计了一个单项的精度变精度变精度变精度变精度的图像的图像模型, 模拟的图像模型,我们用模拟的模型的模型的模型的模型的模型的模型的模拟的模型, 的模拟的模拟的模型的模型的模型的模型的模型的模型的模型的模型是用来进行了人类变精度的模型, 。