We prove that, on bounded expansion classes, every first-order formula with modulo counting is equivalent, in a linear-time computable monadic lift, to an existential first-order formula. As a consequence, we derive, on bounded expansion classes, that first-order transductions with modulo counting have the same encoding power as existential first-order transductions. Also, modulo-counting first-order model checking and computation of the size of sets definable in modulo-counting first-order logic can be achieved in linear time on bounded expansion classes. As an application, we prove that a class has structurally bounded expansion if and only if is a class of bounded depth vertex-minors of graphs in a bounded expansion class. We also show how our results can be used to implement fast matrix calculus on bounded expansion matrices over a finite field.


翻译:我们证明,在捆绑式扩张类中,每个有摩杜洛计数的第一阶公式在线性时间可计算monadic 升降中相当于一个存在性第一阶公式。因此,我们在捆绑式扩张类中得出,带有摩杜洛计数的第一阶转换具有与存在性第一阶转换相同的编码能力。此外,在捆绑式扩张类中,在线性时间中可以实现计算在调制式计算第一阶逻辑中可定义的首阶模型检查和计算。作为一个应用,我们证明,如果并且只有在一个捆绑式扩张类中,一个图形的封闭深度顶点最小值的类别中,一个类别在结构上具有约束性扩张。我们还表明,我们的成果如何能够用于在捆绑式扩张基质矩阵上对有限字段实施快速矩阵计算。

0
下载
关闭预览

相关内容

ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Waveform inversion via reduced order modeling
Arxiv
0+阅读 · 2022年12月28日
Arxiv
0+阅读 · 2022年12月28日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员