In current research, machine and deep learning solutions for the classification of temporal data are shifting from single-channel datasets (univariate) to problems with multiple channels of information (multivariate). The majority of these works are focused on the method novelty and architecture, and the format of the input data is often treated implicitly. Particularly, multivariate datasets are often treated as a stack of univariate time series in terms of input preprocessing, with scaling methods applied across each channel separately. In this evaluation, we aim to demonstrate that the additional channel dimension is far from trivial and different approaches to scaling can lead to significantly different results in the accuracy of a solution. To that end, we test seven different data transformation methods on four different temporal dimensions and study their effect on the classification accuracy of five recent methods. We show that, for the large majority of tested datasets, the best transformation-dimension configuration leads to an increase in the accuracy compared to the result of each model with the same hyperparameters and no scaling, ranging from 0.16 to 76.79 percentage points. We also show that if we keep the transformation method constant, there is a statistically significant difference in accuracy results when applying it across different dimensions, with accuracy differences ranging from 0.23 to 47.79 percentage points. Finally, we explore the relation of the transformation methods and dimensions to the classifiers, and we conclude that there is no prominent general trend, and the optimal configuration is dataset- and classifier-specific.


翻译:在目前的研究中,用于时间数据分类的机器和深层次学习解决方案正在从单通道数据集(单轨)向多个信息渠道(多轨)的问题(多轨)转变,这些作品大多侧重于方法的新颖性和结构,输入数据的格式往往被暗含处理。特别是,从输入预处理的角度看,多变数据集常常被视为一组单流时间序列,每个频道分别采用按比例尺度的方法。在本次评估中,我们的目的是证明,频道的额外层面远远不是微不足道的,而扩大范围的不同方法可能导致在解决方案的准确性方面产生显著不同的结果。为此,我们测试了四个不同时间层面的七种不同的数据转换方法,并研究了其对最近五种方法的分类准确性的影响。我们表明,就绝大多数测试过的数据集而言,最好的变异式-变异组合导致与每个模型的结果相比准确性提高准确性,从0.16到76.79个百分点不等。我们还表明,如果我们保持这一转换方法的精确度不变,那么,我们之间的精确度和精确度之间就是一个统计性差异。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
32+阅读 · 2022年2月15日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员