We study the fair division of indivisible items. In the general model, the goal is to allocate $m$ indivisible items to $n$ agents while satisfying fairness criteria such as MMS, EF1, and EFX. We also study a recently-introduced graphical model that represents the fair division problem as a multigraph, in which vertices correspond to agents and edges to items. The graphical model stipulates that an item can have non-zero marginal utility to an agent only if its corresponding edge is incident to the agent's corresponding vertex. We study orientations (allocations that allocate each edge to an endpoint) in this model, as they are particularly desirable. Our first contribution concerns MMS allocations of mixed manna (i.e. a mixture of goods and chores) in the general model. It is known that MMS allocations of goods exist when $m \leq n+5$. We generalize this and show that when $m \leq n+5$, MMS allocations of mixed manna exist as long as $n \leq 3$, there is an agent whose MMS threshold is non-negative, or every item is a chore. Remarkably, our result leaves only the case where every agent has a negative MMS threshold unanswered. Our second contribution concerns EFX orientations of multigraphs of goods. We show that deciding whether EFX orientations exist for multigraphs is NP-complete, even for symmetric bi-valued multigraphs. Complementarily, we show symmetric bi-valued multigraphs that do not contain non-trivial odd multitrees have EFX orientations that can be found in polynomial time. Our third contribution concerns EF1 and EFX orientations of graphs and multigraphs of chores. We obtain polynomial-time algorithms for deciding whether such graphs have EF1 and EFX orientations, resolving a previous conjecture and showing a fundamental difference between goods and chores division. In addition, we show that the analogous problems for multigraphs are NP-hard.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
49+阅读 · 2021年5月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
14+阅读 · 2024年5月28日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
49+阅读 · 2021年5月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员